Eckmann–Hilton argument: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>AnomieBOT
m Dating maintenance tags: {{Cn}} {{Says who}}
en>RonnieBrown
 
Line 1: Line 1:
[[File:Dodecahedron.png|thumb|The [[dodecahedron]] is a regular polyhedron with Schläfli symbol {5,3}, having 3 [[pentagon]]s around each [[Vertex (geometry)|vertex]].]]
Catrina Le is what's constructed on her birth records though she doesn't extremely like being called such as that. Her job happens to be a cashier but speedily her husband and your will start their own small business. To drive is something which will she's been doing do you recall. For years she's been living on the inside Vermont. Go to her website to find [http://En.wiktionary.org/wiki/accessible accessible] more: http://prometeu.net<br><br>Also visit my weblog: [http://prometeu.net clash of clans cheats gems]
In [[geometry]], the '''Schläfli symbol''' is a notation of the form {p,q,r,...} that defines [[list of regular polytopes|regular polytopes and tessellations]].
 
The Schläfli symbol is named after the 19th-century mathematician [[Ludwig Schläfli]] who made important contributions in [[geometry]] and other areas.
 
== Description ==
 
The Schläfli symbol is a [[Recursive definition|recursive]] description, starting with a ''p''-sided [[regular polygon]] as ''{p}''. For example, {3} is an [[equilateral triangle]], {4} is a [[Square (geometry)|square]] and so on.
 
A regular polyhedron which has ''q'' regular p-sided [[Face (geometry)|polygon faces]] around each [[Vertex (geometry)|vertex]] is represented by {p,q}. For example, the [[cube]] has 3 squares around each vertex and is represented by {4,3}.
 
A regular 4-dimensional polytope, with ''r'' {p,q} regular [[Face (geometry)|polyhedral cells]] around each edge is represented by {p,q,r}, and so on.
 
Regular polytopes can have [[star polygon]] elements, like the [[pentagram]], with symbol {5/2}, represented by the vertices of a [[pentagon]] but connected alternately.
 
A [[Facet (mathematics)|facet]] of a regular polytope {p,q,r,...,y,z} is {p,q,r,...,y}.
 
A regular polytope has a regular [[vertex figure]]. The vertex figure of a regular polytope {p,q,r,...y,z} is {q,r,...y,z}.
 
The Schläfli symbol can represent a finite [[convex polyhedron]], an infinite [[tessellation]] of [[Euclidean space]], or an infinite tessellation of [[hyperbolic space]], depending on the [[angle defect]] of the construction. A positive angle defect allows the vertex figure to ''fold'' into a higher dimension and loops back into itself as a polytope. A zero angle defect will tessellate space of the same dimension as the facets. A negative angle defect can't exist in ordinary space, but can be constructed in hyperbolic space.
 
Usually a vertex figure is assumed to be a finite polytope, but can sometimes be considered a tessellation itself.
 
A regular polytope also has a [[#Dual polytopes|dual polytope]], represented by the ''Schläfli symbol'' elements in reverse order. A self-dual regular polytope will have a symmetric Schläfli symbol.
 
== Symmetry groups ==
 
A Schläfli symbol is closely related to [[Reflection symmetry|reflection]] [[symmetry group]]s, also called [[Coxeter group]]s, given with the same indices, but square brackets instead [p,q,r,...]. Such groups are often named by the regular polytopes they generate. For example [3,3] is the Coxeter group for reflective [[tetrahedral symmetry]], and [3,4] is reflective [[octahedral symmetry]], and [3,5] is reflective [[icosahedral symmetry]].
 
== Regular polygons (plane) ==
 
The Schläfli symbol of a regular [[polygon]] with ''n'' edges is {''n''}.
 
For example, a regular [[pentagon]] is represented by {5}.
 
See the convex [[regular polygon]] and nonconvex [[star polygon]].
 
For example, {5/2} is the [[pentagram]].
 
== Regular polyhedra (3-space) ==
The Schläfli symbol of a regular [[polyhedron]] is {''p'',''q''} if its [[face (geometry)|faces]] are ''p''-gons, and each vertex is surrounded by ''q'' faces (the [[vertex figure]] is a ''q''-gon).
 
For example {5,3} is the regular [[dodecahedron]]. It has pentagonal (5 edges) faces, and 3 pentagons around each vertex.
 
See the 5 convex [[Platonic solid]]s, the 4 nonconvex [[Kepler-Poinsot polyhedra]].
 
Schläfli symbols may also be defined for regular [[tessellation]]s of [[Euclidean geometry|Euclidean]] or [[hyperbolic geometry|hyperbolic]] space in a similar way.
 
For example, the [[hexagonal tiling]] is represented by {6,3}.
 
== Regular polychora (4-space) ==
 
The Schläfli symbol of a regular [[polychoron]] is of the form {''p'',''q'',''r''}. Its (two-dimensional) faces are regular ''p''-gons ({''p''}), the cells are regular polyhedra of type {''p'',''q''}, the vertex figures are  regular polyhedra of type {''q'',''r''}, and the edge figures are regular ''r''-gons (type {''r''}).
 
See the six [[convex regular 4-polytope|convex regular]] and 10 [[List of regular polytopes#Nonconvex forms (4D)|nonconvex polychora]].
 
For example, the [[120-cell]] is represented by {5,3,3}. It is made of [[dodecahedron]] cells {5,3}, and has 3 cells around each edge.
 
There is also one regular tessellation of Euclidean 3-space: the [[cubic honeycomb]], with a Schläfli symbol of {4,3,4}, made of cubic cells, and 4 cubes around each edge.
 
There are also 4 regular hyperbolic tessellations including {5,3,4}, the [[Hyperbolic small dodecahedral honeycomb]], which fills space with [[dodecahedron]] cells.
 
== Higher dimensions ==
 
For higher dimensional [[polytope]]s, the Schläfli symbol is defined recursively as {''p''<sub>1</sub>, ''p''<sub>2</sub>, ..., ''p''<sub>''n''&nbsp;−&nbsp;1</sub>} if the [[facet (mathematics)|facet]]s have Schläfli symbol {''p''<sub>1</sub>,''p''<sub>2</sub>, ..., ''p''<sub>''n''&nbsp;−&nbsp;2</sub>} and the
[[vertex figure]]s have Schläfli symbol {''p''<sub>2</sub>,''p''<sub>3</sub>, ..., ''p''<sub>''n''&nbsp;−&nbsp;1</sub>}.
 
Notice that a vertex figure of a facet of a polytope and a facet of a vertex figure of the same polytope are the same: {''p''<sub>2</sub>,''p''<sub>3</sub>, ..., ''p''<sub>''n''&nbsp;−&nbsp;2</sub>}.
 
There are only 3 regular polytopes in 5&nbsp;dimensions and above: the [[simplex]], {3,3,3,...,3}; the [[cross-polytope]], {3,3, ..., 3,4}; and the [[hypercube]], {4,3,3,...,3}. There are no non-convex regular polytopes above 4&nbsp;dimensions.
 
== Dual polytopes ==
If a polytope of dimension ≥ 2 has Schläfli symbol {''p''<sub>1</sub>,''p''<sub>2</sub>, ..., ''p''<sub>''n''&nbsp;−&nbsp;1</sub>} then its [[dual polyhedron|dual]]  has Schläfli symbol {''p''<sub>''n''&nbsp;−&nbsp;1</sub>, ..., ''p''<sub>2</sub>,''p''<sub>1</sub>}.
 
If the sequence is [[palindromic]], i.e. the same forwards and backwards, the polytope is ''self-dual''. Every regular polytope in 2&nbsp;dimensions (polygon) is self-dual.
 
== Uniform prismatic polytopes ==
 
[[Prism (geometry)#Uniform prismatic polytope|Uniform prismatic polytopes]] can be defined and named as a [[Cartesian product]] of lower dimensional regular polytopes:
* A '''''p''-gonal [[Prism (geometry)|prism]]''', with vertex figure ''p''.4.4 as { } × {p}. The symbol { } means a [[digon]] or [[line segment]].
* A uniform '''{p,q}-hedral prism''' as { } × {p,q}.
* A uniform '''p-q [[duoprism]]''' as {p} × {q}.
 
== Extension of Schläfli symbols ==
 
=== Polyhedra and tilings ===
[[Coxeter]] expanded his usage of the Schläfli symbol to [[quasiregular polyhedra]] by adding a vertical dimension to the symbol. It was a starting point toward the more general [[Coxeter-Dynkin diagram]]. [[Norman Johnson (mathematician)|Norman Johnson]] simplified the notation for vertical symbols with an ''r'' prefix. The t-notation is the most general, and directly corresponds to the rings of the [[Coxeter-Dynkin diagram]]. All of the symbols have a corresponding [[Alternation (geometry)|alternation]], replacing ''rings'' with  ''holes'' in a Coxeter diagram and ''h'' prefix, construction limited by the requirement that neighboring branches must be even-ordered.
 
{| class=wikitable
!Form
!colspan=3|Extended Schläfli symbols
![[Coxeter notation|Symmetry]]
!colspan=2|[[Coxeter diagram]]
!colspan=3|Example, {4,3}
|- align=center
![[Regular polyhedron|Regular]]
|<math>\begin{Bmatrix} p , q \end{Bmatrix}</math>||{p,q}||t<sub>0</sub>{p,q}
|rowspan=7|[p,q]<BR>or<BR>[(p,q,2)]
|colspan=2|{{CDD|node_1|p|node|q|node}}
|[[File:Hexahedron.png|40px]]||[[Cube]]||{{CDD|node_1|4|node|3|node}}
|- align=center
![[Truncation (geometry)|Truncated]]
| <math>t\begin{Bmatrix} p , q \end{Bmatrix}</math>||t{p,q}||t<sub>0,1</sub>{p,q}
|colspan=2| {{CDD|node_1|p|node_1|q|node}}
|[[File:Truncated hexahedron.png|40px]]||[[Truncated cube]]||{{CDD|node_1|4|node_1|3|node}}
|- align=center
![[Bitruncation]]<BR>(Truncated dual)
| <math>t\begin{Bmatrix} q , p \end{Bmatrix}</math>||2t{p,q}||t<sub>1,2</sub>{p,q}
|{{CDD|node_1|q|node_1|p|node}}||{{CDD|node|p|node_1|q|node_1}}
|[[File:Truncated octahedron.png|40px]]||[[Truncated octahedron]]||{{CDD|node|4|node_1|3|node_1}}
|- align=center
![[Rectification (geometry)|Rectified]]<BR>([[Quasiregular polyhedron|Quasiregular]])
| <math>\begin{Bmatrix} p \\ q \end{Bmatrix}</math>||r{p,q}||t<sub>1</sub>{p,q}
||{{CDD|node_1|split1-pq|nodes}}|| {{CDD|node|p|node_1|q|node}}
|[[File:Cuboctahedron.png|40px]]||[[Cuboctahedron]]||{{CDD|node|4|node_1|3|node}}
|- align=center
!Birectification<BR>(Regular dual)
|<math>\begin{Bmatrix} q , p \end{Bmatrix}</math>||2r{p,q}||t<sub>2</sub>{p,q}
|{{CDD|node_1|q|node|p|node}}||{{CDD|node|p|node|q|node_1}}
|[[File:Octahedron.png|40px]]||[[Octahedron]]||{{CDD|node|4|node|3|node_1}}
|- align=center
![[Cantellation (geometry)|Cantellated]]<BR>([[Expansion (geometry)|Rectified rectified]])
| <math>r\begin{Bmatrix} p \\ q \end{Bmatrix}</math>||rr{p,q}||t<sub>0,2</sub>{p,q}
||{{CDD|node|split1-pq|nodes_11}}|| {{CDD|node_1|p|node|q|node_1}}
|[[File:Small rhombicuboctahedron.png|40px]]||[[Rhombicuboctahedron]]||{{CDD|node_1|4|node|3|node_1}}
|- align=center
![[Omnitruncation|Cantitruncated]]<BR>(Truncated rectified)
| <math>t\begin{Bmatrix} p \\ q \end{Bmatrix}</math>||tr{p,q}||t<sub>0,1,2</sub>{p,q}
||{{CDD|node_1|split1-pq|nodes_11}}|| {{CDD|node_1|p|node_1|q|node_1}}
|[[File:Great rhombicuboctahedron.png|40px]]||[[Truncated cuboctahedron]]||{{CDD|node_1|4|node_1|3|node_1}}
 
|- align=center
!colspan=10|[[Alternation (geometry)|Alternations]]
|- align=center
!Alternated regular<BR>(p is even)
| <math>h \begin{Bmatrix} p , q \end{Bmatrix}</math>||h{p,q}||ht<sub>0</sub>{p,q}||[1<sup>+</sup>,p,q]
|colspan=2| {{CDD|node_h1|p|node|q|node}}
|[[File:Tetrahedron.png|40px]]||Demicube<BR>([[Tetrahedron]])||{{CDD|node_h1|4|node|3|node}}
|- align=center
!Snub regular<BR>(q is even)
| <math>s\begin{Bmatrix} p , q \end{Bmatrix}</math>||s{p,q}||ht<sub>0,1</sub>{p,q}||[p<sup>+</sup>,q]
|colspan=2| {{CDD|node_h|p|node_h|q|node}}
||| ||
|- align=center
!Snub dual regular<BR>(p is even)
| <math>s \begin{Bmatrix} q , p \end{Bmatrix}</math>||s{q,p}||ht<sub>1,2</sub>{p,q}||[p,q<sup>+</sup>]
|{{CDD|node_h|q|node_h|p|node}}||{{CDD|node|p|node_h|q|node_h}}
|[[File:Uniform_polyhedron-43-h01.svg|40px]]||Snub octahedron<BR>([[Icosahedron]])||{{CDD|node|4|node_h|3|node_h}}
 
|- align=center
!Alternated dual regular<BR>(q is even)
| <math>h \begin{Bmatrix} q , p \end{Bmatrix}</math>||h{q,p}||ht<sub>2</sub>{p,q}||[p,q,1<sup>+</sup>]
|{{CDD|node_h1|q|node|p|node}}||{{CDD|node|p|node|q|node_h1}}
| || ||
 
|- align=center
!Alternated rectified<BR>(p and q are even)
| <math>h \begin{Bmatrix} p \\ q \end{Bmatrix}</math>||hr{p,q}||ht<sub>1</sub>{p,q}||[p,1<sup>+</sup>,q]
||{{CDD|node_h1|split1-pq|nodes}}|| {{CDD|node|p|node_h1|q|node}}
| || ||
|- align=center
!Alternated rectified rectified<BR>(p and q are even)
| <math>hr\begin{Bmatrix} p \\ q \end{Bmatrix}</math>||hrr{p,q}||ht<sub>0,2</sub>{p,q}||[(p,q,2<sup>+</sup>)]
||{{CDD|node|split1-pq|nodes_hh}}|| {{CDD|node_h|p|node|q|node_h}}
| || ||
|- align=center
!Quartered<BR>(p and q are even)
| <math>q\begin{Bmatrix} p \\ q \end{Bmatrix}</math>||q{p,q}||ht<sub>0</sub>ht<sub>2</sub>{p,q}||[1<sup>+</sup>,p,q,1<sup>+</sup>]
||{{CDD|node|split1-pq|nodes_h1h1}}|| {{CDD|node_h1|p|node|q|node_h1}}
| || ||
|- align=center
!Snub rectified<BR>Snub quasiregular
| <math>s\begin{Bmatrix} p \\ q \end{Bmatrix}</math>||sr{p,q}||ht<sub>0,1,2</sub>{p,q}||[p,q]<sup>+</sup>
||{{CDD|node_h|split1-pq|nodes_hh}}|| {{CDD|node_h|p|node_h|q|node_h}}
|[[File:Snub hexahedron.png|40px]]||[[Snub cuboctahedron]]<BR>(Snub cube)||{{CDD|node_h|4|node_h|3|node_h}}
|}
 
=== Polychora and honeycombs ===
{| class="wikitable"
|+ Linear families
|-
!Form
!colspan=3|Extended Schläfli symbol
!colspan=2|[[Coxeter diagram]]
!colspan=3|Example, {4,3,3}
|- align=center
!Regular
| <math>\begin{Bmatrix} p, q , r \end{Bmatrix}</math>||{p,q,r}
|t<sub>0</sub>{p,q,r}
|colspan=2|{{CDD|node_1|p|node|q|node|r|node}}
|[[File:Schlegel_wireframe_8-cell.png|40px]]||[[Tesseract]]||{{CDD|node_1|4|node|3|node|3|node}}
|- align=center
!Truncated
| <math>t\begin{Bmatrix} p, q , r \end{Bmatrix}</math> ||t{p,q,r}
|t<sub>0,1</sub>{p,q,r}
|colspan=2|{{CDD|node_1|p|node_1|q|node|r|node}}
|[[File:Schlegel_half-solid_truncated_tesseract.png|40px]]||[[Truncated tesseract]]||{{CDD|node_1|4|node_1|3|node|3|node}}
|- align=center
!Rectified
| <math>\left\{\begin{array}{l}p\\q,r\end{array}\right\}</math>
||r{p,q,r}
|t<sub>1</sub>{p,q,r}
|colspan=2|{{CDD|node|p|node_1|q|node|r|node}}
|[[File:Schlegel_half-solid_rectified_8-cell.png|40px]]||[[Rectified tesseract]]||{{CDD|node|4|node_1|3|node|3|node}} = {{CDD|node_1|split1-43|nodes|3b|nodeb}}
|- align=center
!Bitruncated
| ||2t{p,q,r}
|t<sub>1,2</sub>{p,q,r}
|colspan=2|{{CDD|node|p|node_1|q|node_1|r|node}}
|[[File:Schlegel half-solid bitruncated 16-cell.png|40px]]||[[Bitruncated tesseract]]||{{CDD|node|4|node_1|3|node_1|3|node}}
|- align=center
!Birectified<BR>(Rectified dual)
|<!--<math>\begin{Bmatrix} q , p \\ r \end{Bmatrix}</math><BR>--><math>\left\{\begin{array}{l}q,p\\r\end{array}\right\}</math>
||2r{p,q,r} = r{r,q,p}
|t<sub>2</sub>{p,q,r}
|colspan=2|{{CDD|node|p|node|q|node_1|r|node}}
|[[File:Schlegel_half-solid_rectified_16-cell.png|40px]]||[[Rectified 16-cell]]||{{CDD|node|4|node|3|node_1|3|node}} = {{CDD|node_1|split1|nodes|4a|nodea}}
|- align=center
!Tritruncated<BR>(Truncated dual)
| <math>t\begin{Bmatrix} r, q , p \end{Bmatrix}</math> ||3t{p,q,r} = t{r,q,p}
|t<sub>2,3</sub>{p,q,r}
|colspan=2|{{CDD|node|p|node|q|node_1|r|node_1}}
|[[File:Schlegel half-solid truncated 16-cell.png|40px]]||[[Bitruncated tesseract]]||{{CDD|node|4|node|3|node_1|3|node_1}}
|- align=center
!Trirectified<BR>(Dual)
| <math>\begin{Bmatrix} r, q , p \end{Bmatrix}</math>||3r{p,q,r} = {r,q,p}
|t<sub>3</sub>{p,q,r} = {r,q,p}
|colspan=2|{{CDD|node|p|node|q|node|r|node_1}}
|[[File:Schlegel_wireframe_16-cell.png|40px]]||[[16-cell]]||{{CDD|node|4|node|3|node|3|node_1}}
|- align=center
!Cantellated
| <math>r\left\{\begin{array}{l}p\\q,r\end{array}\right\}</math> ||rr{p,q,r}
|t<sub>0,2</sub>{p,q,r}
|colspan=2|{{CDD|node_1|p|node|q|node_1|r|node}}
|[[File:Schlegel_half-solid_cantellated_8-cell.png|40px]]||[[Cantellated tesseract]]||{{CDD|node_1|4|node|3|node_1|3|node}} = {{CDD|node|split1-43|nodes_11|3b|nodeb}}
|- align=center
!Cantitruncated
| <math>t\left\{\begin{array}{l}p\\q,r\end{array}\right\}</math> ||tr{p,q,r}
|t<sub>0,1,2</sub>{p,q,r}
|colspan=2|{{CDD|node_1|p|node_1|q|node_1|r|node}}
|[[File:Schlegel_half-solid_cantitruncated_8-cell.png|40px]]||[[Cantitruncated tesseract]]||{{CDD|node_1|4|node_1|3|node_1|3|node}} = {{CDD|node_1|split1-43|nodes_11|3b|nodeb}}
|- align=center
!Runcinated<BR>([[Expansion (geometry)|Expanded]])
| <math>e\begin{Bmatrix} p, q , r \end{Bmatrix}</math>  || e{p,q,r}
|t<sub>0,3</sub>{p,q,r}
|colspan=2|{{CDD|node_1|p|node|q|node|r|node_1}}
|[[File:Schlegel_half-solid_runcinated_8-cell.png|40px]]||[[Runcinated tesseract]]||{{CDD|node_1|4|node|3|node|3|node_1}}
|- align=center
!Runcitruncated
| ||
|t<sub>0,1,3</sub>{p,q,r}
|colspan=2|{{CDD|node_1|p|node_1|q|node|r|node_1}}
|[[File:Schlegel_half-solid_runcitruncated_8-cell.png|40px]]||[[Runcitruncated tesseract]]||{{CDD|node_1|4|node_1|3|node|3|node_1}}
|- align=center
!Omnitruncated
| ||
|t<sub>0,1,2,3</sub>{p,q,r}
|colspan=2|{{CDD|node_1|p|node_1|q|node_1|r|node_1}}
|[[File:Schlegel_half-solid_omnitruncated_8-cell.png|40px]]||[[Omnitruncated tesseract]]||{{CDD|node_1|4|node_1|3|node_1|3|node_1}}
|- align=center
!colspan=10|[[Alternation (geometry)|Alternations]]
|- align=center
!Half<BR>p even
| <math>h\begin{Bmatrix} p, q , r \end{Bmatrix}</math>||h{p,q,r}
|ht<sub>0</sub>{p,q,r}
|colspan=2|{{CDD|node_h1|p|node|q|node|r|node}}
|[[File:Schlegel_wireframe_16-cell.png|40px]]||[[16-cell]]||{{CDD|node_h1|4|node|3|node|3|node}}
|- align=center
!Quarter<BR>p and r even
| <math>q\begin{Bmatrix} p, q , r \end{Bmatrix}</math>||q{p,q,r}
|ht<sub>0</sub>ht<sub>3</sub>{p,q,r}
|colspan=2|{{CDD|node_h1|p|node|q|node|r|node_h1}}
| || ||
|- align=center
!Snub<BR>q even
| <math>s\begin{Bmatrix} p, q , r \end{Bmatrix}</math>||s{p,q,r}
|ht<sub>0,1</sub>{p,q,r}
|colspan=2|{{CDD|node_h|p|node_h|q|node|r|node}}
|[[File:Ortho_solid_969-uniform_polychoron_343-snub.png|40px]]||[[Snub 24-cell]]||{{CDD|node_h|3|node_h|4|node|3|node}}
|- align=center
!Snub rectified<BR>r even
| <math>s\left\{\begin{array}{l}p\\q,r\end{array}\right\}</math>||sr{p,q,r}
|ht<sub>0,1,2</sub>{p,q,r}
|colspan=2|{{CDD|node_h|p|node_h|q|node_h|r|node}}
|[[File:Ortho_solid_969-uniform_polychoron_343-snub.png|40px]]||[[Snub 24-cell]]||{{CDD|node_h|3|node_h|3|node_h|4|node}} = {{CDD|node_h|split1|nodes_hh|4a|nodea}}
|}
 
{| class="wikitable"
|+ Bifurcating families
|-
!Form
!colspan=3|Extended Schläfli symbol
!colspan=2|[[Coxeter diagram]]
!colspan=3|Examples
|- align=center
!Quasiregular
| <math>\left\{p,{q\atop q}\right\}</math>||{p,q<sup>1,1</sup>}
|t<sub>0</sub>{p,q<sup>1,1</sup>}
|colspan=2|{{CDD|node_1|p|node|split1-qq|nodes}}
|[[File:Schlegel_wireframe_16-cell.png|40px]]||[[16-cell]]||{{CDD|node_1|3|node|split1|nodes}}
|- align=center
!Truncated
| <math>t\left\{p,{q\atop q}\right\}</math>||t{p,q<sup>1,1</sup>}
|t<sub>0,1</sub>{p,q<sup>1,1</sup>}
|colspan=2|{{CDD|node_1|p|node_1|split1-qq|nodes}}
|[[File:Schlegel half-solid truncated 16-cell.png|40px]]||[[Truncated 16-cell]]||{{CDD|node_1|3|node_1|split1|nodes}}
|- align=center
!Rectified
| <math>\left\{\begin{array}{l}p\\q\\q\end{array}\right\}</math>||r{p,q<sup>1,1</sup>}
|t<sub>1</sub>{p,q<sup>1,1</sup>}
|colspan=2|{{CDD|node|p|node_1|split1-qq|nodes}}
|[[File:Schlegel_wireframe_24-cell.png|40px]]||[[24-cell]]||{{CDD|node|3|node_1|split1|nodes}}
|- align=center
!Cantellated
| <math>r\left\{\begin{array}{l}p\\q\\q\end{array}\right\}</math>||rr{p,q<sup>1,1</sup>}
|t<sub>0,2,3</sub>{p,q<sup>1,1</sup>}
|colspan=2|{{CDD|node_1|p|node|split1-qq|nodes_11}}
|[[File:Schlegel half-solid cantellated 16-cell.png|40px]]||[[Cantellated_16-cell]]||{{CDD|node_1|3|node|split1|nodes_11}}
|- align=center
!Cantitruncated
| <math>t\left\{\begin{array}{l}p\\q\\q\end{array}\right\}</math>||tr{p,q<sup>1,1</sup>}
|t<sub>0,1,2,3</sub>{p,q<sup>1,1</sup>}
|colspan=2|{{CDD|node_1|p|node_1|split1-qq|nodes_11}}
|[[File:Schlegel half-solid cantitruncated 16-cell.png|40px]]||[[Cantitruncated_16-cell]]||{{CDD|node_1|3|node_1|split1|nodes_11}}
|- align=center
!Snub rectified
| <math>s\left\{\begin{array}{l}p\\q\\q\end{array}\right\}</math>||sr{p,q<sup>1,1</sup>}
|ht<sub>0,1,2,3</sub>{p,q<sup>1,1</sup>}
|colspan=2|{{CDD|node_h|p|node_h|split1-qq|nodes_hh}}
|[[File:Ortho_solid_969-uniform_polychoron_343-snub.png|40px]]||[[Snub 24-cell]]||{{CDD|node_h|3|node_h|split1|nodes_hh}}
 
|- align=center
!Quasiregular
| <math>\left\{r,{p\atop q}\right\}</math>||{r,/q\,p}
| t<sub>0</sub>{r,/q\,p}
|colspan=2|{{CDD|node_1|r|node|split1-pq|nodes}}
| || || {{CDD|node_1|3|node|split1-43|nodes}}
|- align=center
!Truncated
| <math>t\left\{r,{p\atop q}\right\}</math>|| t{r,/q\,p}
| t<sub>0,1</sub>{r,/q\,p}
|colspan=2|{{CDD|node_1|r|node_1|split1-pq|nodes}}
| || || {{CDD|node_1|3|node_1|split1-43|nodes}}
|- align=center
!Rectified
| <math>\left\{\begin{array}{l}r\\p\\q\end{array}\right\}</math>|| r{r,/q\,p}
| t<sub>1</sub>{r,/q\,p}
|colspan=2|{{CDD|node|r|node_1|split1-pq|nodes}}
| || || {{CDD|node|3|node_1|split1-43|nodes}}
|- align=center
!Cantellated
| <math>r\left\{\begin{array}{l}r\\p\\q\end{array}\right\}</math>|| rr{r,/q\,p}
| t<sub>0,2,3</sub>{r,/q\,p}
|colspan=2|{{CDD|node_1|r|node|split1-pq|nodes_11}}
| || || {{CDD|node_1|3|node|split1-43|nodes_11}}
|- align=center
!Cantitruncated
| <math>t\left\{\begin{array}{l}r\\p\\q\end{array}\right\}</math>|| tr{r,/q\,p}
| t<sub>0,1,2,3</sub>{r,/q\,p}
|colspan=2|{{CDD|node_1|r|node_1|split1-pq|nodes_11}}
| || || {{CDD|node_1|3|node_1|split1-43|nodes_11}}
|- align=center
!snub rectified
| <math>s\left\{\begin{array}{l}p\\q\\r\end{array}\right\}</math>|| sr{p,/q,/r}
| ht<sub>0,1,2,3</sub>{p,/q,/r}
|colspan=2|{{CDD|node_h|r|node_h|split1-pq|nodes_hh}}
| || || {{CDD|node_h|3|node_h|split1-43|nodes_hh}}
 
|}
 
== References ==
* [[Coxeter|Coxeter, H.S.M.]]; ''[[Regular Polytopes (book)|Regular Polytopes]]'', (Methuen and Co., 1948). (pp.&nbsp;14, 69, 149) [http://books.google.com/books?id=iWvXsVInpgMC&lpg=PP1&dq=Regular%20Polytopes&pg=PP1#v=onepage&q=&f=false]
* ''[http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html Kaleidoscopes: Selected Writings of H.S.M. Coxeter]'', editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10]
** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591]
** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45]
 
== External links ==
* {{mathworld | urlname = SchlaefliSymbol | title = Schläfli symbol}}
* [http://bbs.sachina.pku.edu.cn/Stat/Math_World/math/w/w166.htm Wythoff Symbol and generalized Schläfli Symbols]
* [http://www.ac-noumea.nc/maths/polyhedr/names_.htm polyhedral names et notations]
 
{{DEFAULTSORT:Schlafli symbol}}
[[Category:Polytopes]]
[[Category:Mathematical notation]]

Latest revision as of 20:34, 30 October 2014

Catrina Le is what's constructed on her birth records though she doesn't extremely like being called such as that. Her job happens to be a cashier but speedily her husband and your will start their own small business. To drive is something which will she's been doing do you recall. For years she's been living on the inside Vermont. Go to her website to find accessible more: http://prometeu.net

Also visit my weblog: clash of clans cheats gems