Motive power

From formulasearchengine
Revision as of 21:09, 5 October 2013 by en>Myasuda (1834 definition: added missing diacritic)
Jump to navigation Jump to search

Template:Probability distribution

A phase-type distribution is a probability distribution constructed by a convolution of exponential distributions.[1] It results from a system of one or more inter-related Poisson processes occurring in sequence, or phases. The sequence in which each of the phases occur may itself be a stochastic process. The distribution can be represented by a random variable describing the time until absorption of a Markov process with one absorbing state. Each of the states of the Markov process represents one of the phases.

It has a discrete time equivalent the discrete phase-type distribution.

The set of phase-type distributions is dense in the field of all positive-valued distributions, that is, it can be used to approximate any positive-valued distribution.

Definition

Consider a continuous-time Markov process with m+1 states, where m ≥ 1, such that the states 1,...,m are transient states and state 0 is an absorbing state. Further, let the process have an initial probability of starting in any of the m+1 phases given by the probability vector (α0,α) where α0 is a scalar and α is a 1×m vector.

The continuous phase-type distribution is the distribution of time from the above process's starting until absorption in the absorbing state.

This process can be written in the form of a transition rate matrix,

Q=[00S0S],

where S is an m×m matrix and S0 = -S1. Here 1 represents an m×1 vector with every element being 1.

Characterization

The distribution of time X until the process reaches the absorbing state is said to be phase-type distributed and is denoted PH(α,S).

The distribution function of X is given by,

F(x)=1αexp(Sx)1,

and the density function,

f(x)=αexp(Sx)S0,

for all x > 0, where exp( · ) is the matrix exponential. It is usually assumed the probability of process starting in the absorbing state is zero (i.e. α0= 0). The moments of the distribution function are given by

E[Xn]=(1)nn!αSn1.

Special cases

The following probability distributions are all considered special cases of a continuous phase-type distribution:

  • Degenerate distribution, point mass at zero or the empty phase-type distribution - 0 phases.
  • Exponential distribution - 1 phase.
  • Erlang distribution - 2 or more identical phases in sequence.
  • Deterministic distribution (or constant) - The limiting case of an Erlang distribution, as the number of phases become infinite, while the time in each state becomes zero.
  • Coxian distribution - 2 or more (not necessarily identical) phases in sequence, with a probability of transitioning to the terminating/absorbing state after each phase.
  • Hyper-exponential distribution (also called a mixture of exponential) - 2 or more non-identical phases, that each have a probability of occurring in a mutually exclusive, or parallel, manner. (Note: The exponential distribution is the degenerate situation when all the parallel phases are identical.)
  • Hypoexponential distribution - 2 or more phases in sequence, can be non-identical or a mixture of identical and non-identical phases, generalises the Erlang.

As the phase-type distribution is dense in the field of all positive-valued distributions, we can represent any positive valued distribution. However, the phase-type is a light-tailed or platikurtic distribution. So the representation of heavy-tailed or leptokurtic distribution by phase type is an approximation, even if the precision of the approximation can be as good as we want.

Examples

In all the following examples it is assumed that there is no probability mass at zero, that is α0 = 0.

Exponential distribution

The simplest non-trivial example of a phase-type distribution is the exponential distribution of parameter λ. The parameter of the phase-type distribution are : S = -λ and α = 1.

Hyper-exponential or mixture of exponential distribution

The mixture of exponential or hyper-exponential distribution with λ12,...,λn>0 can be represented as a phase type distribution with

α=(α1,α2,α3,α4,...,αn)

with i=1nαi=1 and

S=[λ100000λ200000λ300000λ400000λ5].

This mixture of densities of exponential distributed random variables can be characterized through

f(x)=i=1nαiλieλix=i=1nαifXi(x),

or its cumulative distribution function

F(x)=1i=1nαieλix=i=1nαiFXi(x).

with XiExp(λi)

Erlang distribution

The Erlang distribution has two parameters, the shape an integer k > 0 and the rate λ > 0. This is sometimes denoted E(k,λ). The Erlang distribution can be written in the form of a phase-type distribution by making S a k×k matrix with diagonal elements -λ and super-diagonal elements λ, with the probability of starting in state 1 equal to 1. For example E(5,λ),

α=(1,0,0,0,0),

and

S=[λλ0000λλ0000λλ0000λλ0000λ].

For a given number of phases, the Erlang distribution is the phase type distribution with smallest coefficient of variation.[2]

The hypoexponential distribution is a generalisation of the Erlang distribution by having different rates for each transition (the non-homogeneous case).

Mixture of Erlang distribution

The mixture of two Erlang distribution with parameter E(3,β1), E(3,β2) and (α12) (such that α1 + α2 = 1 and for each i, αi ≥ 0) can be represented as a phase type distribution with

α=(α1,0,0,α2,0,0),

and

S=[β1β100000β1β100000β1000000β2β200000β2β200000β2].

Coxian distribution

The Coxian distribution is a generalisation of the hypoexponential. Instead of only being able to enter the absorbing state from state k it can be reached from any phase. The phase-type representation is given by,

S=[λ1p1λ10000λ2p2λ20000λk2pk2λk20000λk1pk1λk10000λk]

and

α=(1,0,,0),

where 0 < p1,...,pk-1 ≤ 1. In the case where all pi = 1 we have the hypoexponential distribution. The Coxian distribution is extremely important as any acyclic phase-type distribution has an equivalent Coxian representation.

The generalised Coxian distribution relaxes the condition that requires starting in the first phase.

Generating samples from phase-type distributed random variables

BuTools includes methods for generating samples from phase-type distributed random variables.[3]

Approximating other distributions

Any distribution can be arbitrarily well approximated by a phase type distribution.[4][5] In practice, however, approximations can be poor when the size of the approximating process is fixed. Approximating a deterministic distribution of time 1 with 10 phases, each of average length 0.1 will have variance 0.1 (because the Erlang distribution has smallest variance[2]).

Fitting a phase type distribution to data

Methods to fit a phase type distribution to data can be classified as maximum likelihood methods or moment matching methods.[7] Fitting a phase type distribution to heavy-tailed distributions has been shown to be practical in some situations.[8]

  • PhFit a C script for fitting discrete and continuous phase type distributions to data[9]
  • EMpht is a C script for fitting phase-type distributions to data or parametric distributions using an expectation–maximization algorithm.[10]
  • HyperStar was developed around the core idea of making phase-type fitting simple and user-friendly, in order to advance the use of phase-type distributions in a wide range of areas. It provides a graphical user interface and yields good fitting results with only little user interaction.[11]
  • jPhase is a Java library which can also compute metrics for queues using the fitted phase type distribution[12]

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

  • M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models: an Algorithmic Approach, Chapter 2: Probability Distributions of Phase Type; Dover Publications Inc., 1981.
  • G. Latouche, V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic Modelling, 1st edition. Chapter 2: PH Distributions; ASA SIAM, 1999.
  • C. A. O'Cinneide (1990). Characterization of phase-type distributions. Communications in Statistics: Stochastic Models, 6(1), 1-57.
  • C. A. O'Cinneide (1999). Phase-type distribution: open problems and a few properties, Communication in Statistic: Stochastic Models, 15(4), 731-757.

55 yrs old Metal Polisher Records from Gypsumville, has interests which include owning an antique car, summoners war hack and spelunkering. Gets immense motivation from life by going to places such as Villa Adriana (Tivoli).

my web site - summoners war hack no survey ios

  1. Template:Cite doi
  2. 2.0 2.1 Template:Cite doi
  3. Template:Cite doi
  4. Template:Cite doi
  5. Template:Cite doi
  6. Template:Cite doi
  7. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  8. Template:Cite doi
  9. Template:Cite doi
  10. Template:Cite jstor
  11. Template:Cite doi
  12. Template:Cite doi