Difference between revisions of "Adiabatic process"
(All revisions contained links to *.com, blanking) 
m (Reverted edits by MediaWiki spam cleanup (talk) to last revision by 5.249.53.64) 

Line 1:  Line 1:  
+  {{ThermodynamicscTopic=[[Thermodynamic systemSystems]]}}  
+  An '''adiabatic process''' ({{IPAcenˌædiəˈbætɪk}}; from the [[Greek languageGreek]] [[privative aprivative]] "a" + "diavaton") is a process that occurs without the transfer of [[heat]] or matter between a system and its surroundings.<ref>[[Constantin CarathéodoryCarathéodory, C.]] (1909). Untersuchungen über die Grundlagen der Thermodynamik, ''Mathematische Annalen'', '''67''': 355–386, {{doi10.1007/BF01450409}}. A translation may be found [http://neoclassicalphysics.info/uploads/3/0/6/5/3065888/caratheodory__thermodynamics.pdf here]. Also a mostly reliable [http://books.google.com.au/books?id=xwBRAAAAMAAJ&q=Investigation+into+the+foundations translation is to be found] at Kestin, J. (1976). ''The Second Law of Thermodynamics'', Dowden, Hutchinson & Ross, Stroudsburg PA.</ref><ref>Bailyn, M. (1994). ''A Survey of Thermodynamics'', American Institute of Physics Press, New York, ISBN 0883187973, p. 21.</ref> A key concept in [[thermodynamics]], adiabatic transfer provides a rigorous conceptual basis for the theory used to expound the [[first law of thermodynamics]]. It is also key in a practical sense, that many rapid chemical and physical processes are described using the adiabatic approximation; such processes are usually followed or preceded by events that do involve heat transfer.  
+  Adiabatic processes are primarily and exactly defined for a system contained by walls that are completely thermally insulating and impermeable to matter; such walls are said to be [[Adiabatic enclosureadiabatic]]. An '''adiabatic transfer''' is a transfer of energy as work across an adiabatic wall or sector of a boundary.  
+  
+  Approximately, a transfer may be regarded as adiabatic if it happens in an extremely short time, so that there is no opportunity for significant heat exchange.<ref>http://buphy.bu.edu/~duffy/semester1/c27_process_adiabatic_sim.html</ref>  
+  
+  The [[adiabatic flame temperature]] is a virtual quantity. It is the temperature that would be achieved by a [[fireflame]] in the absence of heat loss to the surroundings.  
+  
+  ==Etymology==  
+  
+  The term ''adiabatic'' literally means 'not to be passed'. It is formed from the [[privative aprivative]] "α" ("not") + ''διαβατός'', "able to be passed through", in turn deriving from ''διὰ'' ("through"), and ''βαῖνειν'' ("to pass"), thus ''ἀδιάβατος ''.<ref>Liddell, H.G., Scott, R. (1940). ''A GreekEnglish Lexicon'', Clarendon Press, Oxford UK.</ref> According to [[James Clerk MaxwellMaxwell]], the term was introduced by [[William John Macquorn RankineRankine]].<ref>  
+  {{Citation  
+   last = Maxwell  
+   first = J.C.  
+   authorlink = James Clerk Maxwell  
+   last2 =  
+   first2 =  
+   author2link =  
+   other =  
+   title = Theory of Heat  
+   place = London  
+   publisher = [[LongmanLongmans, Green and Co.]]  
+   series =  
+   volume =  
+   origyear =  
+   year = 1871  
+   month=  
+   edition = first  
+   page = 129  
+   language =  
+   url = http://archive.org/details/theoryheat04maxwgoog  
+   archiveurl =  
+   archivedate =  
+   doi =  
+   id =  
+   isbn =  
+  }}</ref><ref>Rankine, W.J.McQ. (1866). On the theory of explosive gas engines, ''The Engineeer'', July 27, 1866; at page 467 of the reprint in ''[https://archive.org/details/miscellaneoussci00rank Miscellaneous Scientific Papers]'', edited by W.J. Millar, 1881, Charles Griffin, London.</ref>  
+  
+  The etymological origin corresponds here to an impossibility of [[Heattransfer of energy as heat]] and of transfer of matter across the wall.  
+  
+  ==Description==  
+  
+  An adiabatic transfer of energy as work may be described by the notation {{math''Q'' {{=}} 0}} where {{math''Q''}} is the quantity of energy transferred as heat across the adiabatic boundary or wall.  
+  
+  An ideal or fictive adiabatic transfer of energy as work that occurs without friction or viscous dissipation within the system is said to be [[Isentropic processisentropic]], with {{mathΔ''S'' {{=}} 0}}.  
+  
+  For a natural process of transfer of energy as heat, driven by a finite temperature difference, entropy is both transferred with the heat and generated within the system. Such a process is in general neither adiabatic nor isentropic, having {{math''Q'' ≠ 0}} and {{mathΔ''S'' ≠ 0}}.  
+  
+  For a general fictive quasistatic transfer of energy as heat, driven by an ideally infinitesimal temperature difference, the [[second law of thermodynamics]] provides that {{mathδ''Q'' {{=}} ''T'' d<sub>e</sub>''S''}}, where {{mathδ''Q''}} denotes an infinitesimal element of transfer of energy as heat into the system from its surroundings, {{math''T''}} denotes the practically common temperature of system and surroundings at which the transfer takes place, and {{mathd<sub>e</sub>''S''}} denotes the infinitesimal element of entropy transferred into the system from the surroundings with the heat transfer. For an adiabatic fictive quasistatic process, {{mathδ''Q'' {{=}} 0}} and {{mathd<sub>e</sub>''S'' {{=}} 0}}.  
+  
+  For a natural process of transfer of energy as heat, driven by a finite temperature difference, there is generation of entropy within the system, in addition to entropy that is transferred into the system from the surroundings. If the process is fairly slow, so that it can be described near enough by differentials, the second law of thermodynamics observes that {{mathδ''Q'' < ''T'' d''S''}}. Here {{math''T''}} denotes the temperature of the system to which heat is transferred. Entropy {{mathd<sub>i</sub>''S''}} is thereby generated internally within the system, in addition to the entropy {{mathd<sub>e</sub>''S''}} transferred with the heat. Thus the total entropy increment within the system is given by {{mathd''S'' {{=}} d<sub>i</sub>''S'' + d<sub>e</sub>''S''}}.<ref>Kondepudi, D., [[Ilya PrigoginePrigogine, I.]] (1998). ''Modern Thermodynamics: From Heat Engines to Dissipative Structures'', John Wiley & Sons, Chichester, ISBN 0–471–97393–9, p. 88.</ref>  
+  
+  A natural adiabatic process is irreversible and is not isentropic. Adiabatic transfer of energy as work can be analyzed into two extreme component kinds. One extreme kind is without friction or viscous dissipation within the system, and this is usually pressurevolume work, denoted customarily by {{math''P'' d''V''}}. This is an ideal case that does not exactly occur in nature. It may be regarded as "reversible". The other extreme kind is isochoric work, for which {{mathd''V'' {{=}} 0}}, solely through friction or viscous dissipation within the system. Isochoric work is irreversible.<ref>Münster, A. (1970), ''Classical Thermodynamics'', translated by E.S. Halberstadt, Wiley–Interscience, London, ISBN 0471624306, p. 45.</ref> The second law of thermodynamics observes that a natural process of transfer of energy as work, exactly considered, always consists at least of isochoric work and often of both of these extreme kinds of work. Every natural process, exactly considered, is irreversible, however slight may be the friction or viscosity.  
+  
+  ==Adiabatic heating and cooling==<! This section is linked from [[Water]] >  
+  Adiabatic changes in temperature occur due to changes in [[pressure]] of a [[gas]] while not adding or subtracting any [[heat]]. In contrast, [[free expansion]] is an [[isothermal]] process for an ideal gas.  
+  
+  '''Adiabatic heat''' occurs when the pressure of a gas is increased from work done on it by its surroundings, e.g., a [[piston]] compressing a gas contained within an adiabatic cylinder. This finds practical application in [[Diesel engines]] which rely on the lack of quick heat dissipation during their compression stroke to elevate the fuel vapor temperature sufficiently to ignite it.  
+  
+  Adiabatic heating also occurs in the [[Earth's atmosphere]] when an [[air mass]] descends, for example, in a [[katabatic wind]] or [[Foehn windFoehn]] or [[chinook windchinook]] wind flowing downhill over a mountain range. When a parcel of air descends, the pressure on the parcel increases. Due to this increase in pressure, the parcel's volume decreases and its temperature increases, thus increasing the internal energy.  
+  
+  '''Adiabatic cooling''' occurs when the pressure of a substance is decreased as it does work on its surroundings. Adiabatic cooling occurs in the [[Earth's atmosphere]] with [[orographic lifting]] and [[lee waves]], and this can form [[Pileus (meteorology)pileus]] or [[lenticular cloud]]s if the air is cooled below the [[dew point]]. When the pressure applied on a parcel of air decreases, the air in the parcel is allowed to expand; as the volume increases, the temperature falls and internal energy decreases.  
+  
+  Adiabatic cooling does not have to involve a fluid. One technique used to reach very low temperatures (thousandths and even millionths of a degree above absolute zero) is [[adiabatic demagnetizationadiabatic demagnetisation]], where the change in [[magnetic field]] on a magnetic material is used to provide adiabatic cooling. Also, the contents of an [[expanding universe]] (to first order) can be described as an adiabatically cooling fluid. ''(See  [[Heat death of the universe]])''  
+  
+  Rising magma also undergoes adiabatic cooling before eruption, particularly significant in the case of magmas that rise quickly from great depths such as [[kimberlite]]s.<ref name="Kavanagh">{{cite journallast=Kavanaghfirst=J.L.author2=Sparks R.S.J.year=2009title=Temperature changes in ascending kimberlite magmasjournal=Earth and Planetary Science Letterspublisher=[[Elsevier]]volume=286issue=3–4pages=404–413doi=10.1016/j.epsl.2009.07.011url=http://monash.academia.edu/JanineKavanagh/Papers/114092/Temperature_changes_in_ascending_kimberlite_magmaaccessdate=18 February 2012bibcode = 2009E&PSL.286..404K }}</ref>  
+  
+  Such temperature changes can be quantified using the [[ideal gas law]], or the [[hydrostatic equation]] for atmospheric processes.  
+  
+  In practice, no process is truly adiabatic. Many processes rely on a large difference in time scales of the process of interest and the rate of heat dissipation across a system boundary, and thus are approximated by using an adiabatic assumption. There is always some heat loss, as no perfect insulators exist.  
+  
+  ==Ideal gas (reversible process)==  
+  {{mainReversible adiabatic process}}  
+  
+  [[Image:Adiabatic.svgthumb341pxFor a simple substance, during an adiabatic process in which the volume increases, the [[internal energy]] of the working substance must decrease]]  
+  The mathematical equation for an [[ideal gas]] undergoing a reversible (i.e., no entropy generation) adiabatic process is  
+  : <math> P V^{\gamma} = \operatorname{constant} \qquad </math>  
+  where ''P'' is pressure, ''V'' is volume, and  
+  : <math> \gamma = {C_{P} \over C_{V}} = \frac{f + 2}{f}, </math>  
+  <math> C_{P} </math> being the [[specific heat]] for constant pressure,  
+  <math> C_{V} </math> being the specific heat for constant volume, <math> \gamma </math> is the [[adiabatic index]], and <math> f </math> is the number of [[Degrees of freedom (physics and chemistry)degrees of freedom]] (3 for monatomic gas, 5 for diatomic gas and collinear molecules e.g. carbon dioxide).  
+  
+  For a monatomic ideal gas, <math> \gamma = 5/3 \,</math>, and for a diatomic gas (such as [[nitrogen]] and [[oxygen]], the main components of [[Earth's atmosphereair]]) <math> \gamma = 7/5 \,</math>.<ref>[http://hyperphysics.phyastr.gsu.edu/hbase/thermo/adiab.html Adiabatic Processes]</ref> Note that the above formula is only applicable to classical ideal gases and not [[Bose–Einstein condensateBose–Einstein]] or [[Fermionic condensateFermi gases]].  
+  
+  For reversible adiabatic processes, it is also true that  
+  
+  : <math> P^{1\gamma}T^{\gamma}= \operatorname{constant}</math>  
+  
+  : <math> VT^{f/2} = \operatorname{constant} </math>  
+  
+  where ''T'' is an absolute temperature.  
+  
+  This can also be written as  
+  
+  : <math> TV^{\gamma  1} = \operatorname{constant} </math>  
+  
+  ===Example of adiabatic compression===  
+  Let's now look at a common example of adiabatic compression the compression stroke in a [[gasoline engine]]. We will make a few simplifying assumptions: that the uncompressed volume of the cylinder is 1000 cm3 (one liter), that the gas within is nearly pure nitrogen (thus a diatomic gas with five degrees of freedom and so <math>\gamma </math> = 7/5), and that the compression ratio of the engine is 10:1 (that is, the 1000 cm3 volume of uncompressed gas will compress down to 100 cm3 when the piston goes from bottom to top). The uncompressed gas is at approximately room temperature and pressure (a warm room temperature of ~27 ºC or 300 K, and a pressure of 1 bar ~ 100 kPa, or about 14.7 PSI, or typical sealevel atmospheric pressure).  
+  
+  <math> P V^{\gamma} = \operatorname{constant} = 100,000 \operatorname{pa} * 1000^{7/5} = 100 \times 10^3 * 15.8 \times 10^3 = 1.58 \times 10^9 </math>  
+  
+  so our adiabatic constant for this experiment is about 1.58 billion.  
+  
+  The gas is now compressed to a 100cc volume (we will assume this happens quickly enough that no heat can enter or leave the gas). The new volume is 100 ccs, but the constant for this experiment is still 1.58 billion:  
+  
+  <math> P * V^{\gamma} = \operatorname{constant} = 1.58 \times 10^9 = P * 100^{7/5} </math>  
+  
+  so solving for P:  
+  
+  <math> P = 1.58 \times 10^9 / {100^{7/5}} = 1.58 \times 10^9 / 630.9 = 2.50 \times 10^6 \operatorname{ Pa} </math>  
+  
+  or about 362 PSI or 24.5 atm. Note that this pressure increase is more than a simple 10:1 compression ratio would indicate; this is because the gas is not only compressed, but the work done to compress the gas has also heated the gas and the hotter gas will have a greater pressure even if the volume had not changed.  
+  
+  We can solve for the temperature of the compressed gas in the engine cylinder as well, using the ideal gas law.  
+  Our initial conditions are 100,000 pa of pressure, 1000 cc volume, and 300 K of temperature, so our experimental constant is:  
+  
+  <math> {P V \over T} = \operatorname {constant} = {{10^5 * 10^3 } \over {300} } = 3.33 \times 10^5 </math>  
+  
+  We know the compressed gas has V = 100 cc and P = 2.50E6 pascals, so we can solve for temperature by simple algebra:  
+  
+  <math> {P V \over {\operatorname{constant}}} = T = {{2.50 \times 10^6 * 100} \over {3.33 \times 10^5}} = 751 </math>  
+  
+  That's a final temperature of 751 K, or 477 °C, or 892 °F, well above the ignition point of many fuels. This is why a high compression engine requires fuels specially formulated to not selfignite (which would cause [[engine knocking]] when operated under these conditions of temperature and pressure), or that a [[supercharger]] and [[inter cooler]] to provide a lower temperature at the same pressure would be advantageous. A [[diesel engine]] operates under even more extreme conditions, with compression ratios of 20:1 or more being typical, in order to provide a very high gas temperature which ensures immediate ignition of injected fuel.  
+  
+  ===Adiabatic free expansion of a gas===  
+  {{See alsoFree expansion}}  
+  For an adiabatic free expansion of an ideal gas, the gas is contained in an insulated container and then allowed to expand in a vacuum. Because there is no external pressure for the gas to expand against, the work done by or on the system is zero. Since this process does not involve any heat transfer or work, the First Law of Thermodynamics then implies that the net internal energy change of the system is zero. For an ideal gas, the temperature remains constant because the internal energy only depends on temperature in that case. Since at constant temperature, the entropy is proportional to the volume, the entropy increases in this case, therefore this process is irreversible.  
+  
+  ===Derivation of continuous formula for adiabatic heating and cooling===  
+  The definition of an adiabatic process is that heat transfer to the system is zero, <math>\delta Q=0 </math>. Then, according to the [[first law of thermodynamics]],  
+  
+  :<math> \text{(1)} \qquad d U + \delta W = \delta Q = 0, </math>  
+  
+  where ''dU'' is the change in the internal energy of the system and ''δW'' is work done  
+  ''by'' the system. Any work (''δW'') done must be done at the expense of internal energy ''U'', since no heat ''δQ'' is being supplied from the surroundings. Pressurevolume work ''δW'' done ''by'' the system is defined as  
+  
+  :<math> \text{(2)} \qquad \delta W = P \, dV. </math>  
+  
+  However, ''P'' does not remain constant during an adiabatic process but  
+  instead changes along with ''V''.  
+  
+  It is desired to know how the values of ''dP'' and  
+  ''dV'' relate to each other as the adiabatic process proceeds.  
+  For an ideal gas the internal energy is given by  
+  
+  :<math> \text{(3)} \qquad U = \alpha n R T, </math>  
+  
+  where <big><math>{\alpha}</math></big> is the number of [[Degrees of freedom (physics and chemistry)degrees of freedom]] divided by two, ''R'' is the [[universal gas constant]] and ''n'' is the number of moles in the system (a constant).  
+  
+  Differentiating Equation (3) and use of the [[ideal gas law]], <math>P V = n R T</math>, yields  
+  
+  :<math> \text{(4)} \qquad d U = \alpha n R \, dT  
+  = \alpha \, d (P V)  
+  = \alpha (P \, dV + V \, dP). </math>  
+  
+  Equation (4) is often expressed as <math> d U = n C_{V} \, d T </math>  
+  because <math> C_{V} = \alpha R </math>.  
+  
+  Now substitute equations (2) and (4) into equation (1) to obtain  
+  
+  : <math> P \, dV = \alpha P \, dV + \alpha V \, dP,</math>  
+  
+  factorize :<math> P \, dV,</math>:  
+  
+  : <math>  (\alpha + 1) P \, dV = \alpha V \, dP,</math>  
+  
+  and divide both sides by ''PV'':  
+  
+  : <math> (\alpha + 1) {d V \over V} = \alpha {d P \over P}. </math>  
+  
+  After integrating the left and right sides from <math>V_0</math> to V and from <math>P_0</math> to P and changing the sides respectively,  
+  
+  : <math> \ln \left( {P \over P_0} \right) = {{\alpha + 1 \over \alpha}} \ln \left( {V \over V_0} \right). </math>  
+  
+  Exponentiate both sides, and substitute <math>{\alpha + 1 \over \alpha}</math> with <math>\gamma</math>, the [[heat capacity ratio]]  
+  
+  : <math> \left( {P \over P_0} \right) = \left( {V \over V_0} \right)^{{\gamma}}, </math>  
+  
+  and eliminate the negative sign to obtain  
+  
+  : <math> \left( {P \over P_0} \right) = \left( {V_0 \over V} \right)^{\gamma}. </math>  
+  
+  Therefore,  
+  
+  : <math> \left( {P \over P_0} \right) \left( {V \over V_0} \right)^{\gamma} = 1</math>  
+  
+  and  
+  
+  : <math> P_0 V_0^{\gamma} = P V^\gamma = \operatorname{constant}. </math>  
+  
+  ===Derivation of discrete formula===  
+  The change in internal energy of a system, measured from state 1 to state 2, is equal to  
+  
+  :<math> \text{(1)} \qquad \Delta U = \alpha R nT_2  \alpha R nT_1 = \alpha Rn \Delta T </math>  
+  
+  At the same time, the work done by the pressurevolume changes as a result from this process, is equal to  
+  
+  :<math> \text{(2)} \qquad W = \int_{V_1}^{V_2}P\, dV </math>  
+  
+  Since we require the process to be adiabatic, the following equation needs to be true  
+  
+  :<math> \text{(3)} \qquad \Delta U + W = 0 </math>  
+  
+  By the previous derivation,  
+  
+  :<math> \text{(4)} \qquad P V^\gamma = \text{constant} = P_1 V_1^\gamma </math>  
+  
+  Rearranging (4) gives  
+  
+  :<math> P = P_1 \left(\frac{V_1}{V} \right)^\gamma </math>  
+  
+  Substituting this into (2) gives  
+  
+  :<math> W = \int_{V_1}^{V_2}P_1 \left(\frac{V_1}{V} \right)^\gamma\, dV </math>  
+  
+  Integrating,  
+  
+  :<math> W = P_1 V_1^\gamma \frac{V_2^{1\gamma}V_1^{1\gamma}}{1\gamma} </math>  
+  
+  Substituting <math> \gamma = \frac{\alpha+1}{\alpha} </math>,  
+  
+  :<math> W =  \alpha P_1 V_1^{\gamma} \left( V_2^{1\gamma}  V_1^{1\gamma} \right) </math>  
+  
+  Rearranging,  
+  
+  :<math> W =  \alpha P_1 V_1 \left( \left( \frac{V_2}{V_1} \right)^{1\gamma}  1 \right) </math>  
+  
+  Using the ideal gas law and assuming a constant molar quantity (as often happens in practical cases),  
+  
+  :<math> W =  \alpha n R T_1 \left( \left( \frac{V_2}{V_1} \right)^{1\gamma}  1 \right) </math>  
+  
+  By the continuous formula,  
+  
+  :<math> \frac{P_2}{P_1}=\left(\frac{V_2}{V_1}\right)^{\gamma} </math>  
+  
+  Or,  
+  
+  :<math> \left(\frac{P_2}{P_1}\right)^{1 \over \gamma}=\frac{V_2}{V_1} </math>  
+  
+  Substituting into the previous expression for <math> W </math>,  
+  
+  :<math> W =  \alpha n R T_1 \left( \left( \frac{P_2}{P_1} \right)^{\frac{\gamma1}{\gamma}}  1 \right) </math>  
+  
+  Substituting this expression and (1) in (3) gives  
+  
+  :<math> \alpha n R (T_2  T_1) = \alpha n R T_1 \left( \left( \frac{P_2}{P_1} \right)^{\frac{\gamma1}{\gamma}}  1 \right) </math>  
+  
+  Simplifying,  
+  
+  :<math> T_2  T_1 = T_1 \left( \left( \frac{P_2}{P_1} \right)^{\frac{\gamma1}{\gamma}}  1 \right) </math>  
+  
+  Simplifying,  
+  
+  :<math> \frac{T_2}{T_1}1 = \left( \frac{P_2}{P_1} \right)^{\frac{\gamma1}{\gamma}}  1 </math>  
+  
+  Simplifying,  
+  
+  :<math> T_2 = T_1 \left( \frac{P_2}{P_1} \right)^{\frac{\gamma1}{\gamma}} </math>  
+  
+  ==Graphing adiabats==  
+  An adiabat is a curve of constant [[entropy]] on the PV diagram. Properties of adiabats on a PV diagram are:  
+  # Every adiabat [[Asymptoteasymptotically approaches]] both the V axis and the P axis (just like [[isotherms]]).  
+  # Each adiabat intersects each isotherm exactly once.  
+  # An adiabat looks similar to an isotherm, except that during an expansion, an adiabat loses more pressure than an isotherm, so it has a steeper inclination (more vertical).  
+  # If isotherms are concave towards the "northeast" direction (45 °), then adiabats are concave towards the "east northeast" (31 °).  
+  # If adiabats and isotherms are graphed severally at regular changes of entropy and temperature, respectively (like altitude on a contour map), then as the eye moves towards the axes (towards the southwest), it sees the density of isotherms stay constant, but it sees the density of adiabats grow. The exception is very near absolute zero, where the density of adiabats drops sharply and they become rare (see [[Nernst's theorem]]).  
+  
+  The following diagram is a PV diagram with a superposition of adiabats and isotherms:  
+  
+  [[Image:Entropyandtemp.PNG]]  
+  
+  The isotherms are the red curves and the adiabats are the black curves.  
+  
+  The adiabats are isentropic.  
+  
+  Volume is the horizontal axis and pressure is the vertical axis.  
+  
+  ==See also==  
+  * [[Cyclic process]]  
+  * [[First law of thermodynamics]]  
+  * [[Heat burst]]  
+  * [[Isobaric process]]  
+  * [[Isenthalpic process]]  
+  * [[Isentropic process]]  
+  * [[Isochoric process]]  
+  * [[Isothermal process]]  
+  * [[Polytropic process]]  
+  * [[Entropy (classical thermodynamics)]]  
+  * [[Quasistatic equilibrium]]  
+  * [[Total air temperature]]  
+  * [[Adiabatic engine]]  
+  * [[Magnetic refrigeration]]  
+  
+  ==References==  
+  {{reflist2}}  
+  * {{cite book first=Robert J. last=Silbey last2=''et al.'' year=2004 title=Physical chemistry location=Hoboken publisher=Wiley page=55 isbn=9780471215042 }}  
+  * Broholm, Collin. "Adiabatic free expansion." Physics & Astronomy @ Johns Hopkins University. N.p., 26 Nov. 1997. Web. 14 Apr. *Nave, Carl Rod. "Adiabatic Processes." HyperPhysics. N.p., n.d. Web. 14 Apr. 2011. [http://hyperphysics.phyastr.gsu.edu/hbase/thermo/adiab.html].  
+  * Thorngren, Dr. Jane R.. "Adiabatic Processes." Daphne – A Palomar College Web Server. N.p., 21 July 1995. Web. 14 Apr. 2011. [http://daphne.palomar.edu/jthorngren/adiabatic_processes.htm].  
+  
+  ==External links==  
+  * [http://hyperphysics.phyastr.gsu.edu/hbase/thermo/adiab.html#c1: Article in HyperPhysics Encyclopaedia]  
+  
+  {{DEFAULTSORT:Adiabatic Process}}  
+  [[Category:Thermodynamic processes]]  
+  [[Category:Atmospheric thermodynamics]]  
+  
+  {{Link GAru}} 
Revision as of 13:46, 31 July 2014
{{#invoke:Sidebar collapsible  bodyclass = plainlist  titlestyle = paddingbottom:0.3em;borderbottom:1px solid #aaa;  title = Thermodynamics  imagestyle = display:block;margin:0.3em 0 0.4em;  image =  caption = The classical Carnot heat engine  listtitlestyle = background:#ddf;textalign:center;  expanded = Systems
 list1name = branches  list1title = Branches  list1 = Template:Startflatlist
 list2name = laws  list2title = Laws  list2 = Template:Startflatlist
 list3name = systems  list3title = Systems  list3 =
State 

Processes 
Cycles 
 list4name = sysprop  list4title = System properties
 list4 =
Functions of state 

Process functions 
 list5name = material  list5title = Material properties  list5 =
 list6name = equations  list6title = Equations  list6 = Template:Startflatlist
 Maxwell relations
 Onsager reciprocal relations
 Bridgman's equations
 Table of thermodynamic equations
 list7name = potentials  list7title = Potentials  list7 = Template:Startflatlist
 list8name = hist/cult  list8title = Template:Hlist  list8 =
History 

Philosophy 
Theories 

Key publications 
Timelines 
Template:Hlist 
 list9name = scientists  list9title = Scientists  list9 = Template:Startflatlist
 Bernoulli
 Carnot
 Clapeyron
 Clausius
 Carathéodory
 Duhem
 Gibbs
 von Helmholtz
 Joule
 Maxwell
 von Mayer
 Onsager
 Rankine
 Smeaton
 Stahl
 Thompson
 Thomson
 Waterston
 below = Book:Thermodynamics
}} An adiabatic process (Template:IPAcen; from the Greek privative "a" + "diavaton") is a process that occurs without the transfer of heat or matter between a system and its surroundings.^{[1]}^{[2]} A key concept in thermodynamics, adiabatic transfer provides a rigorous conceptual basis for the theory used to expound the first law of thermodynamics. It is also key in a practical sense, that many rapid chemical and physical processes are described using the adiabatic approximation; such processes are usually followed or preceded by events that do involve heat transfer.
Adiabatic processes are primarily and exactly defined for a system contained by walls that are completely thermally insulating and impermeable to matter; such walls are said to be adiabatic. An adiabatic transfer is a transfer of energy as work across an adiabatic wall or sector of a boundary.
Approximately, a transfer may be regarded as adiabatic if it happens in an extremely short time, so that there is no opportunity for significant heat exchange.^{[3]}
The adiabatic flame temperature is a virtual quantity. It is the temperature that would be achieved by a flame in the absence of heat loss to the surroundings.
Etymology
The term adiabatic literally means 'not to be passed'. It is formed from the privative "α" ("not") + διαβατός, "able to be passed through", in turn deriving from διὰ ("through"), and βαῖνειν ("to pass"), thus ἀδιάβατος .^{[4]} According to Maxwell, the term was introduced by Rankine.^{[5]}^{[6]}
The etymological origin corresponds here to an impossibility of transfer of energy as heat and of transfer of matter across the wall.
Description
An adiabatic transfer of energy as work may be described by the notation Q = 0 where Q is the quantity of energy transferred as heat across the adiabatic boundary or wall.
An ideal or fictive adiabatic transfer of energy as work that occurs without friction or viscous dissipation within the system is said to be isentropic, with ΔS = 0.
For a natural process of transfer of energy as heat, driven by a finite temperature difference, entropy is both transferred with the heat and generated within the system. Such a process is in general neither adiabatic nor isentropic, having Q ≠ 0 and ΔS ≠ 0.
For a general fictive quasistatic transfer of energy as heat, driven by an ideally infinitesimal temperature difference, the second law of thermodynamics provides that δQ = T d_{e}S, where δQ denotes an infinitesimal element of transfer of energy as heat into the system from its surroundings, T denotes the practically common temperature of system and surroundings at which the transfer takes place, and d_{e}S denotes the infinitesimal element of entropy transferred into the system from the surroundings with the heat transfer. For an adiabatic fictive quasistatic process, δQ = 0 and d_{e}S = 0.
For a natural process of transfer of energy as heat, driven by a finite temperature difference, there is generation of entropy within the system, in addition to entropy that is transferred into the system from the surroundings. If the process is fairly slow, so that it can be described near enough by differentials, the second law of thermodynamics observes that δQ < T dS. Here T denotes the temperature of the system to which heat is transferred. Entropy d_{i}S is thereby generated internally within the system, in addition to the entropy d_{e}S transferred with the heat. Thus the total entropy increment within the system is given by dS = d_{i}S + d_{e}S.^{[7]}
A natural adiabatic process is irreversible and is not isentropic. Adiabatic transfer of energy as work can be analyzed into two extreme component kinds. One extreme kind is without friction or viscous dissipation within the system, and this is usually pressurevolume work, denoted customarily by P dV. This is an ideal case that does not exactly occur in nature. It may be regarded as "reversible". The other extreme kind is isochoric work, for which dV = 0, solely through friction or viscous dissipation within the system. Isochoric work is irreversible.^{[8]} The second law of thermodynamics observes that a natural process of transfer of energy as work, exactly considered, always consists at least of isochoric work and often of both of these extreme kinds of work. Every natural process, exactly considered, is irreversible, however slight may be the friction or viscosity.
Adiabatic heating and cooling
Adiabatic changes in temperature occur due to changes in pressure of a gas while not adding or subtracting any heat. In contrast, free expansion is an isothermal process for an ideal gas.
Adiabatic heat occurs when the pressure of a gas is increased from work done on it by its surroundings, e.g., a piston compressing a gas contained within an adiabatic cylinder. This finds practical application in Diesel engines which rely on the lack of quick heat dissipation during their compression stroke to elevate the fuel vapor temperature sufficiently to ignite it.
Adiabatic heating also occurs in the Earth's atmosphere when an air mass descends, for example, in a katabatic wind or Foehn or chinook wind flowing downhill over a mountain range. When a parcel of air descends, the pressure on the parcel increases. Due to this increase in pressure, the parcel's volume decreases and its temperature increases, thus increasing the internal energy.
Adiabatic cooling occurs when the pressure of a substance is decreased as it does work on its surroundings. Adiabatic cooling occurs in the Earth's atmosphere with orographic lifting and lee waves, and this can form pileus or lenticular clouds if the air is cooled below the dew point. When the pressure applied on a parcel of air decreases, the air in the parcel is allowed to expand; as the volume increases, the temperature falls and internal energy decreases.
Adiabatic cooling does not have to involve a fluid. One technique used to reach very low temperatures (thousandths and even millionths of a degree above absolute zero) is adiabatic demagnetisation, where the change in magnetic field on a magnetic material is used to provide adiabatic cooling. Also, the contents of an expanding universe (to first order) can be described as an adiabatically cooling fluid. (See  Heat death of the universe)
Rising magma also undergoes adiabatic cooling before eruption, particularly significant in the case of magmas that rise quickly from great depths such as kimberlites.^{[9]}
Such temperature changes can be quantified using the ideal gas law, or the hydrostatic equation for atmospheric processes.
In practice, no process is truly adiabatic. Many processes rely on a large difference in time scales of the process of interest and the rate of heat dissipation across a system boundary, and thus are approximated by using an adiabatic assumption. There is always some heat loss, as no perfect insulators exist.
Ideal gas (reversible process)
{{#invoke:mainmain}}
The mathematical equation for an ideal gas undergoing a reversible (i.e., no entropy generation) adiabatic process is
where P is pressure, V is volume, and
being the specific heat for constant pressure, being the specific heat for constant volume, is the adiabatic index, and is the number of degrees of freedom (3 for monatomic gas, 5 for diatomic gas and collinear molecules e.g. carbon dioxide).
For a monatomic ideal gas, , and for a diatomic gas (such as nitrogen and oxygen, the main components of air) .^{[10]} Note that the above formula is only applicable to classical ideal gases and not Bose–Einstein or Fermi gases.
For reversible adiabatic processes, it is also true that
where T is an absolute temperature.
This can also be written as
Example of adiabatic compression
Let's now look at a common example of adiabatic compression the compression stroke in a gasoline engine. We will make a few simplifying assumptions: that the uncompressed volume of the cylinder is 1000 cm3 (one liter), that the gas within is nearly pure nitrogen (thus a diatomic gas with five degrees of freedom and so = 7/5), and that the compression ratio of the engine is 10:1 (that is, the 1000 cm3 volume of uncompressed gas will compress down to 100 cm3 when the piston goes from bottom to top). The uncompressed gas is at approximately room temperature and pressure (a warm room temperature of ~27 ºC or 300 K, and a pressure of 1 bar ~ 100 kPa, or about 14.7 PSI, or typical sealevel atmospheric pressure).
so our adiabatic constant for this experiment is about 1.58 billion.
The gas is now compressed to a 100cc volume (we will assume this happens quickly enough that no heat can enter or leave the gas). The new volume is 100 ccs, but the constant for this experiment is still 1.58 billion:
so solving for P:
or about 362 PSI or 24.5 atm. Note that this pressure increase is more than a simple 10:1 compression ratio would indicate; this is because the gas is not only compressed, but the work done to compress the gas has also heated the gas and the hotter gas will have a greater pressure even if the volume had not changed.
We can solve for the temperature of the compressed gas in the engine cylinder as well, using the ideal gas law. Our initial conditions are 100,000 pa of pressure, 1000 cc volume, and 300 K of temperature, so our experimental constant is:
We know the compressed gas has V = 100 cc and P = 2.50E6 pascals, so we can solve for temperature by simple algebra:
That's a final temperature of 751 K, or 477 °C, or 892 °F, well above the ignition point of many fuels. This is why a high compression engine requires fuels specially formulated to not selfignite (which would cause engine knocking when operated under these conditions of temperature and pressure), or that a supercharger and inter cooler to provide a lower temperature at the same pressure would be advantageous. A diesel engine operates under even more extreme conditions, with compression ratios of 20:1 or more being typical, in order to provide a very high gas temperature which ensures immediate ignition of injected fuel.
Adiabatic free expansion of a gas
{{#invoke:see alsoseealso}} For an adiabatic free expansion of an ideal gas, the gas is contained in an insulated container and then allowed to expand in a vacuum. Because there is no external pressure for the gas to expand against, the work done by or on the system is zero. Since this process does not involve any heat transfer or work, the First Law of Thermodynamics then implies that the net internal energy change of the system is zero. For an ideal gas, the temperature remains constant because the internal energy only depends on temperature in that case. Since at constant temperature, the entropy is proportional to the volume, the entropy increases in this case, therefore this process is irreversible.
Derivation of continuous formula for adiabatic heating and cooling
The definition of an adiabatic process is that heat transfer to the system is zero, . Then, according to the first law of thermodynamics,
where dU is the change in the internal energy of the system and δW is work done by the system. Any work (δW) done must be done at the expense of internal energy U, since no heat δQ is being supplied from the surroundings. Pressurevolume work δW done by the system is defined as
However, P does not remain constant during an adiabatic process but instead changes along with V.
It is desired to know how the values of dP and dV relate to each other as the adiabatic process proceeds. For an ideal gas the internal energy is given by
where is the number of degrees of freedom divided by two, R is the universal gas constant and n is the number of moles in the system (a constant).
Differentiating Equation (3) and use of the ideal gas law, , yields
Equation (4) is often expressed as because .
Now substitute equations (2) and (4) into equation (1) to obtain
and divide both sides by PV:
After integrating the left and right sides from to V and from to P and changing the sides respectively,
Exponentiate both sides, and substitute with , the heat capacity ratio
and eliminate the negative sign to obtain
Therefore,
and
Derivation of discrete formula
The change in internal energy of a system, measured from state 1 to state 2, is equal to
At the same time, the work done by the pressurevolume changes as a result from this process, is equal to
Since we require the process to be adiabatic, the following equation needs to be true
By the previous derivation,
Rearranging (4) gives
Substituting this into (2) gives
Integrating,
Rearranging,
Using the ideal gas law and assuming a constant molar quantity (as often happens in practical cases),
By the continuous formula,
Or,
Substituting into the previous expression for ,
Substituting this expression and (1) in (3) gives
Simplifying,
Simplifying,
Simplifying,
Graphing adiabats
An adiabat is a curve of constant entropy on the PV diagram. Properties of adiabats on a PV diagram are:
 Every adiabat asymptotically approaches both the V axis and the P axis (just like isotherms).
 Each adiabat intersects each isotherm exactly once.
 An adiabat looks similar to an isotherm, except that during an expansion, an adiabat loses more pressure than an isotherm, so it has a steeper inclination (more vertical).
 If isotherms are concave towards the "northeast" direction (45 °), then adiabats are concave towards the "east northeast" (31 °).
 If adiabats and isotherms are graphed severally at regular changes of entropy and temperature, respectively (like altitude on a contour map), then as the eye moves towards the axes (towards the southwest), it sees the density of isotherms stay constant, but it sees the density of adiabats grow. The exception is very near absolute zero, where the density of adiabats drops sharply and they become rare (see Nernst's theorem).
The following diagram is a PV diagram with a superposition of adiabats and isotherms:
The isotherms are the red curves and the adiabats are the black curves.
The adiabats are isentropic.
Volume is the horizontal axis and pressure is the vertical axis.
See also
 Cyclic process
 First law of thermodynamics
 Heat burst
 Isobaric process
 Isenthalpic process
 Isentropic process
 Isochoric process
 Isothermal process
 Polytropic process
 Entropy (classical thermodynamics)
 Quasistatic equilibrium
 Total air temperature
 Adiabatic engine
 Magnetic refrigeration
References
 ↑ Carathéodory, C. (1909). Untersuchungen über die Grundlagen der Thermodynamik, Mathematische Annalen, 67: 355–386, Template:Hide in printTemplate:Only in print. A translation may be found here. Also a mostly reliable translation is to be found at Kestin, J. (1976). The Second Law of Thermodynamics, Dowden, Hutchinson & Ross, Stroudsburg PA.
 ↑ Bailyn, M. (1994). A Survey of Thermodynamics, American Institute of Physics Press, New York, ISBN 0883187973, p. 21.
 ↑ http://buphy.bu.edu/~duffy/semester1/c27_process_adiabatic_sim.html
 ↑ Liddell, H.G., Scott, R. (1940). A GreekEnglish Lexicon, Clarendon Press, Oxford UK.
 ↑ {{#invoke:citation/CS1citation CitationClass=citation }}
 ↑ Rankine, W.J.McQ. (1866). On the theory of explosive gas engines, The Engineeer, July 27, 1866; at page 467 of the reprint in Miscellaneous Scientific Papers, edited by W.J. Millar, 1881, Charles Griffin, London.
 ↑ Kondepudi, D., Prigogine, I. (1998). Modern Thermodynamics: From Heat Engines to Dissipative Structures, John Wiley & Sons, Chichester, ISBN 0–471–97393–9, p. 88.
 ↑ Münster, A. (1970), Classical Thermodynamics, translated by E.S. Halberstadt, Wiley–Interscience, London, ISBN 0471624306, p. 45.
 ↑ {{#invoke:Citation/CS1citation CitationClass=journal }}
 ↑ Adiabatic Processes
 {{#invoke:citation/CS1citation
CitationClass=book }}
 Broholm, Collin. "Adiabatic free expansion." Physics & Astronomy @ Johns Hopkins University. N.p., 26 Nov. 1997. Web. 14 Apr. *Nave, Carl Rod. "Adiabatic Processes." HyperPhysics. N.p., n.d. Web. 14 Apr. 2011. [1].
 Thorngren, Dr. Jane R.. "Adiabatic Processes." Daphne – A Palomar College Web Server. N.p., 21 July 1995. Web. 14 Apr. 2011. [2].