Chvátal graph

From formulasearchengine
Revision as of 10:44, 20 August 2013 by en>Yobot (→‎External links: WP:CHECKWIKI error fixes / special characters in sortkey fixed using AWB (9427))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In differential geometry the Hitchin–Thorpe inequality is a famous relation which restricts the topology of 4-manifolds that carry an Einstein metric.

Statement of the Hitchin–Thorpe inequality

Let M be a compact, oriented, smooth four-dimensional manifold. If there exists a Riemannian metric on M which is an Einstein metric, then following inequality holds

where is the Euler characteristic of and is the signature of . This inequality was first stated by John Thorpe[1] in a footnote to a 1969 paper focusing on manifolds of higher dimension. Nigel Hitchin then rediscovered the inequality, and gave a complete characterization [2] of the equality case in 1974; he found that if is an Einstein manifold with then must be a flat torus, a Calabi–Yau manifold, or a quotient thereof.

Idea of the proof

The main ingredients in the proof of the Hitchin–Thorpe inequality are the decomposition of the Riemann curvature tensor and the Generalized Gauss-Bonnet theorem.

Failure of the converse

A natural question to ask is whether the Hitchin–Thorpe inequality provides a sufficient condition for the existence of Einstein metrics. In 1995, Claude LeBrun and Andrea Sambusetti independently showed that the answer is no: there exist infinitely many non-homeomorphic compact, smooth, oriented 4-manifolds M that carry no Einstein metrics but nevertheless satisfy

LeBrun's examples [3] are actually simply connected, and the relevant obstruction depends on the smooth structure of the manifold. By contrast, Sambusetti's obstruction [4] only applies to 4-manifolds with infinite fundamental group, but the volume-entropy estimate he uses to prove non-existence only depends on the homotopy type of the manifold.

Footnotes

  1. J. Thorpe, Some remarks on on the Gauss-Bonnet formula, J. Math. Mech. 18 (1969) pp. 779--786.
  2. N. Hitchin, On compact four-dimensional Einstein manifolds, J. Diff. Geom. 9 (1974) pp. 435--442.
  3. C. LeBrun, Four-manifolds without Einstein Metrics, Math. Res. Letters 3 (1996) pp. 133--147.
  4. A. Sambusetti, An obstruction to the existence of Einstein metrics on 4-manifolds, C.R. Acad. Sci. Paris 322 (1996) pp. 1213--1218.

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534