Classical Wiener space: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
 
Line 1: Line 1:
{{unreferenced|date=August 2009}}
Hi there, I am Felicidad Oquendo. Interviewing is what I do in my day occupation. Delaware is our birth place. The favorite pastime for him and his children is to drive and now he is trying to earn cash with it.<br><br>Feel free to surf to my web site ... [http://www.Sceltic.at/index.php?mod=users&action=view&id=51301 extended car warranty]
{{Expert-subject|Mathematics|date=February 2009}}
 
In [[mathematics]], the '''Malliavin derivative''' is a notion of [[derivative]] in the [[Malliavin calculus]]. Intuitively, it is the notion of derivative appropriate to paths in [[classical Wiener space]], which are "usually" not differentiable in the usual sense. {{Citation Needed|date=August 2011}}
 
==Definition==
Let <math>H</math> be the [[Cameron-Martin space]], and <math>C_{0}</math> denote [[classical Wiener space]]:
 
:<math>H := \{ f \in W^{1,2} ([0, T]; \mathbb{R}^{n}) \;|\; f(0) = 0 \} := \{ \text{paths starting at 0 with first derivative in } L^{2} \}</math>;
 
:<math>C_{0} := C_{0} ([0, T]; \mathbb{R}^{n}) := \{ \text{continuous  paths starting at 0} \}</math>;
 
By the [[Sobolev_inequality#Sobolev_embedding_theorem|Sobolev embedding theorem]], <math>H \subset C_0</math>. Let
:<math>i : H \to C_{0}</math>
denote the [[inclusion map]].
 
Suppose that <math>F : C_{0} \to \mathbb{R}</math> is [[Fréchet derivative|Fréchet differentiable]]. Then the [[Fréchet derivative]] is a map
 
:<math>\mathrm{D} F : C_{0} \to \mathrm{Lin} (C_{0}; \mathbb{R})</math>;
 
i.e., for paths <math>\sigma \in C_{0}</math>, <math>\mathrm{D} F (\sigma)\;</math> is an element of <math>C_{0}^{*}</math>, the [[dual space]] to <math>C_{0}\;</math>. Denote by <math>\mathrm{D}_{H} F(\sigma)\;</math> the [[continuous function|continuous]] [[linear map]] <math>H \to \mathbb{R}</math> defined by
 
:<math>\mathrm{D}_{H} F (\sigma) := \mathrm{D} F (\sigma) \circ i : H \to \mathbb{R}, </math>
 
sometimes known as the [[H-derivative|''H''-derivative]]. Now define <math>\nabla_{H} F : C_{0} \to H</math> to be the [[adjoint]]{{dn|date=December 2013}} of <math>\mathrm{D}_{H} F\;</math> in the sense that
 
:<math>\int_0^T \left(\partial_t \nabla_H F(\sigma)\right) \cdot \partial_t h := \langle \nabla_{H} F (\sigma), h \rangle_{H} = \left( \mathrm{D}_{H} F \right) (\sigma) (h) = \lim_{t \to 0} \frac{F (\sigma + t i(h)) - F(\sigma)}{t}</math>.
 
Then the '''Malliavin derivative''' <math>\mathrm{D}_{t}</math> is defined by
 
:<math>\left( \mathrm{D}_{t} F \right) (\sigma) := \frac{\partial}{\partial t} \left( \left( \nabla_{H} F \right) (\sigma) \right).</math>
 
The [[domain (mathematics)|domain]] of <math>\mathrm{D}_{t}</math> is the set <math>\mathbf{F}</math> of all Fréchet differentiable real-valued functions on <math>C_{0}\;</math>; the [[codomain]] is <math>L^{2} ([0, T]; \mathbb{R}^{n})</math>.
 
The '''Skorokhod integral''' <math>\delta\;</math> is defined to be the [[adjoint]]{{dn|date=December 2013}} of the Malliavin derivative:
 
:<math>\delta := \left( \mathrm{D}_{t} \right)^{*} : \operatorname{image} \left( \mathrm{D}_{t} \right) \subseteq L^{2} ([0, T]; \mathbb{R}^{n}) \to \mathbf{F}^{*} = \mathrm{Lin} (\mathbf{F}; \mathbb{R}).</math>
 
==See also==
*[[H-derivative]]
 
==References==
{{reflist}}
 
[[Category:Generalizations of the derivative]]
[[Category:Stochastic calculus]]

Latest revision as of 11:35, 6 March 2014

Hi there, I am Felicidad Oquendo. Interviewing is what I do in my day occupation. Delaware is our birth place. The favorite pastime for him and his children is to drive and now he is trying to earn cash with it.

Feel free to surf to my web site ... extended car warranty