HD 114613

From formulasearchengine
Revision as of 22:23, 23 January 2014 by en>ShellfaceTheStrange (That's some fine contextual writing there, guy. And let's get some accurate photometry and fix those references, why not.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Unbalanced

Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church. Template:Continuum mechanics

In fluid mechanics, non-dimensionalization of Navier–Stokes equation is the conversion of the Navier–Stokes equation to a form which is easier to use and reducing the number of free parameters in the problem to be studied. The non-dimensionalized Navier–Stokes equation is beneficial to use when posed with similar physical situations that is problems where the only change are in the basic dimensions of the system. Scaling of Navier–Stokes equation refers to the process of selecting the proper scales for non-dimensionalization of the equation. Since the final equation needs to be dimensionless, using the parameters and constants of the equation a suitable combination of these is found having the same dimensions as that of the variables in the equation. As a result of this combination the number of parameters to be analyzed is reduced and the results are obtained in terms of scaled variables.

Need for non-dimensionalization and scaling

In addition to reducing the number of parameters, non-dimensionalized equation helps to gain a greater insight into the relative size of various terms present in the equation.[1][2] Following appropriate selecting of scales for the non-dimensionalization process, this leads to identification of small terms in the equation. Neglecting the smaller terms against the bigger ones allows for the simplification of the situation. For the case of flow without heat transfer, the non-dimensionalized Navier–Stokes equation depend only on the Reynolds Number and hence all physical realizations of the related experiment will have the same value of non-dimensionalized variables for the same Reynolds Number.[3]

Scaling helps provide better understanding of the physical situation, with the variation in dimensions of the parameters involved in the equation. This allows for experiments to be conducted on smaller scale prototypes provided that any physical effects which are not included in the non-dimensionalized equation are unimportant.

Non-dimensionalized Navier–Stokes equation

The Navier–Stokes equation is written as:

[4][5]

where ρ is the density of fluid, P is the pressure, μ is the viscosity and f is the body force.

The above equation can be dimensionalized through selection of appropriate scales as follows:

Scale dimensionless variable
Length L
Velocity U
Time L/U
Pressure: there is no natural selection for the pressure scale. Where dynamic effects are dominant i.e. high velocity flows

Where viscous effects are dominant i.e. creeping flows

Substituting the scales the non-dimensionalized equation obtained is:

Template:NumBlk

If the gravitational force is the only body force then the term gL/U2 can be substituted with 1/Fr, where Fr is the Froude number defined as

This is only valid if there is a free surface. For flows where viscous forces are dominant i.e. slow flows with large viscosity, a viscous pressure scale μU/L is used. In the absence of a free surface, the equation obtained is

Template:NumBlk

Scaling of equation (Template:EquationNote) can be done, in a flow where inertia term is smaller than the viscous term i.e. when Re → 0 then inertia terms can be neglected, leaving the equation of a creeping motion.

Such flows tend to have influence of viscous interaction over large distances from an object.Potter or Ceramic Artist Truman Bedell from Rexton, has interests which include ceramics, best property developers in singapore developers in singapore and scrabble. Was especially enthused after visiting Alejandro de Humboldt National Park. At low pressures the same equation reduces to a diffusion equation

Similarly if Re → ∞ i.e. when the inertia forces dominates, the viscous force can be neglected by substituting μ = 0 in the equation.The non-dimensionalized Euler equation for an inviscid flow is

[6]

Density variation due to both concentration and temperature is an important field of study in Double diffusive convection"If density changes due to both temperature and salinity is taken into account then some more terms add to the Z-Component of momentum as follows:[7] [8]

Where S is the salinity of the fluid, βT is the thermal expansion coefficient at constant pressure and βS is the coefficient of saline expansion at constant pressure and temperature. Non dimensionalizing using the scale:

and

we get

where ST, TT denote the salinity and temperature at top layer, SB, TB denote the salinity and temperature at bottom layer, Ra is the Rayleigh Number, and Pr is the Prandtl Number. The sign of RaS and RaT will change depending on whether it stabilizes or destabilizes the system.

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro. Template:Refbegin

  • Template:Cite web
  • T.Cebeci J.RShao,F. Kafyeke E. Laurendeau, Computational Fluid Dynamics for Engineers, Springer, 2005
  • C. Pozrikidis, FLUID DYNAMICS Theory, Computation, and Numerical Simulation, KLUWER ACADEMIC PUBLISHERS, 2001

Template:Refend

Further reading

Template:Refbegin

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
    This book contains several examples of different non-dimensionalizations and scalings of the Navier–Stokes equations
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534

Template:Refend

  1. Versteeg H.K, An introduction to computational fluid dynamics: the finite volume method, 2007, prentice hall, 9780131274983
  2. Patankar Suhas V. , Numerical heat transfer and fluid flow, 1980, Taylor & Francis, 9780891165224
  3. Salvi Rodolfo, The Navier Stokes equation theory and numerical methods, 2002, M. Dekker, 9780824706722
  4. Cite error: Invalid <ref> tag; no text was provided for refs named Robert
  5. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  6. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  7. On the relationship between finger width, velocity, and fluxes in thermohaline convection, 2009, K. R. Sreenivas, O. P. Singh & J. Srinivasan, Phys. Fluids (American Institute of Physics) 21(2), pp. 026601.
  8. Approximation of the hydrostatic Navier-Stokes system for density stratified flows by a multilayer model. Kinetic interpretation and numerical validation, E. Audusse a,b , M.-O. Bristeau , M. Pelanti , J. Sainte-Marie, aUniversité Paris 13, Institut Galilée, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France. b INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France. c Saint-Venant Laboratory, 6 quai Watier, 78400 Chatou, France.