Metric connection

From formulasearchengine
Revision as of 17:02, 29 October 2014 by en>P199 (merge from Metric compatibility)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, a metric connection is a connection in a vector bundle E equipped with a metric for which the inner product of any two vectors will remain the same when those vectors are parallel transported along any curve. Other common equivalent formulations of a metric connection include:

A special case of a metric connection is the Levi-Civita connection. Here the bundle E is the tangent bundle of a manifold. In addition to being a metric connection, the Levi-Civita connection is required to be torsion free.

Riemannian connections

An important special case of a metric connection is a Riemannian connection. This is a connection on the tangent bundle of a pseudo-Riemannian manifold (M, g) such that for all vector fields X on M. Equivalently, is Riemannian if the parallel transport it defines preserves the metric g.

A given connection is Riemannian if and only if

for all vector fields X, Y and Z on M, where denotes the derivative of the function along this vector field .

The Levi-Civita connection is the torsion-free Riemannian connection on a manifold. It is unique by the fundamental theorem of Riemannian geometry.

Metric compatibility

In mathematics, given a metric tensor , a covariant derivative is said to be compatible with the metric if the following condition is satisfied:

Although other covariant derivatives may be supported within the metric, usually one only ever considers the metric-compatible one. This is because given two covariant derivatives, and , there exists a tensor for transforming from one to the other:

If the space is also torsion-free, then the tensor is symmetric in its first two indices.


|CitationClass=citation }}

External links