From formulasearchengine
Revision as of 15:18, 17 April 2012 by en>NOrbeck (Deleted reference to nonexistent upper indices)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In linear algebra, a one-form on a vector space is the same as a linear functional on the space. The usage of one-form in this context usually distinguishes the one-forms from higher-degree multilinear functionals on the space. For details, see linear functional.

In differential geometry, a one-form on a differentiable manifold is a smooth section of the cotangent bundle. Equivalently, a one-form on a manifold M is a smooth mapping of the total space of the tangent bundle of M to R whose restriction to each fibre is a linear functional on the tangent space. Symbolically,

where αx is linear.

Often one-forms are described locally, particularly in local coordinates. In a local coordinate system, a one-form is a linear combination of the differentials of the coordinates:

where the fi are smooth functions. From this perspective, a one-form has a covariant transformation law on passing from one coordinate system to another. Thus a one-form is an order 1 covariant tensor field.


Many real-world concepts can be described as one-forms:

  • Indexing into a vector: The second element of a three-vector is given by the one-form [0, 1, 0]. That is, the second element of [x ,y ,z] is
[0, 1, 0] · [xyz] = y.
  • Mean: The mean element of an n-vector is given by the one-form [1/n, 1/n, ..., 1/n]. That is,
  • Sampling: Sampling with a kernel can be considered a one-form, where the one-form is the kernel shifted to the appropriate location.

Differential of a function


Let be open (e.g., an interval ), and consider a differentiable function , with derivative f'. The differential df of f, at a point , is defined as a certain linear map of the variable dx. Specifically, . (The meaning of the symbol dx is thus revealed: it is simply an argument, or independent variable, of the function df.) Hence the map sends each point x to a linear functional df(x,dx). This is the simplest example of a differential (one-)form.

In terms of the de Rham complex, one has an assignment from zero-forms (scalar functions) to one-forms i.e., .

See also


bg:Ковектор ca:Covector de:1-Form es:1-forma fr:Forme différentielle de degré un ru:Ковариантный вектор zh:1-形式