# Pendulum (mathematics)

Template:Dynamics
The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple **pendulum** allows the equations of motion to be solved analytically for small-angle oscillations.

## Simple gravity pendulum

A simple pendulum is an idealization of a real pendulum using the following assumptions:

- The rod or cord on which the bob swings is massless, inextensible and always remains taut;
- Motion occurs only in two dimensions, i.e. the bob does not trace an ellipse but an arc.
- The motion does not lose energy to friction or air resistance.

The differential equation which represents the motion of a simple pendulum is

where g is acceleration due to gravity, is the length of the pendulum, and θ is the angular displacement.

## Small-angle approximation

The differential equation given above is not easily solved. However adding a restriction to the size of the oscillation's amplitude gives a form whose solution can be easily obtained. If it is assumed that the angle is much less than 1 radian, or

then substituting for sin θ into (1) using the small-angle approximation,

yields the equation for a harmonic oscillator

The error due to the approximation is of order *θ*^{ 3} (from the Maclaurin series for sin *θ*).

Given the initial conditions *θ*(0) = *θ*_{0} and *dθ*/*dt*(0) = 0, the solution becomes,

The motion is simple harmonic motion where *θ*_{0} is the semi-amplitude of the oscillation (that is, the maximum angle between the rod of the pendulum and the vertical). The period of the motion, the time for a complete oscillation (outward and return) is

which is known as Christiaan Huygens's law for the period. Note that under the small-angle approximation, the period is independent of the amplitude *θ*_{0}; this is the property of isochronism that Galileo discovered.

### Rule of thumb for pendulum length

If SI units are used (i.e. measure in metres and seconds), and assuming the measurement is taking place on the Earth's surface, then m/s^{2}, and (the exact figure is 0.994 to 3 decimal places).

Therefore a relatively reasonable approximation for the length and period are,

## Arbitrary-amplitude period

For amplitudes beyond the small angle approximation, one can compute the exact period by first inverting the equation for the angular velocity obtained from the energy method,

and then integrating over one complete cycle,

or twice the half-cycle

or 4 times the quarter-cycle

which leads to

This integral can be re-written in terms of elliptic functions as

where is the incomplete elliptic function of the first kind defined by

or more concisely by the substitution expressing in terms of ,

where is the complete elliptic function of the first kind defined by

Figure 3 shows the deviation of *T* from *T*_{0}, the period obtained from small-angle approximation.

Value for the complete elliptic function can be computed using the following series:

Figure 4 shows the relative errors using the power series. *T*_{0} is the linear approximation, and *T*_{2} to *T*_{10} include respectively the terms up to the 2nd to the 10th powers.

For a swing of exactly 180° the bob is balanced over its pivot point and so *T* = ∞.

For example, the period of a pendulum of length 1 m on Earth (*g* = 9.80665 m/s^{2}) at initial angle 10 degrees is , where the linear approximation gives .

The difference (less than 0.2%) is much less than that caused by the variation of g with geographical location.

By using the following Maclaurin series:

The equivalent power series is:^{[1]}

A much simpler and better converging formula for the period is discussed on pp. 1096-1097 of the September 2012 issue of the Notices of the AMS^{[2]}:

where is the arithmetic-geometric mean of 1 and .

## Examples

The animations below depict several different modes of oscillation given different initial conditions. The small graph above the pendulums are their phase portraits.

## Compound pendulum

A **compound pendulum** (or **physical pendulum**) is one where the rod is not massless, and may have extended size; that is, an arbitrarily shaped rigid body swinging by a pivot. In this case the pendulum's period depends on its moment of inertia *I* around the pivot point.

The equation of torque gives:

where:

The torque is generated by gravity so:

where:

*L*is the distance from the pivot to the center of mass of the pendulum*θ*is the angle from the vertical

Hence, under the small-angle approximation ,

This is of the same form as the conventional simple pendulum and this gives a period of:

^{[3]}

And a frequency of:

## Physical interpretation of the imaginary period

The Jacobian elliptic function that expresses the position of a pendulum as a function of time is a doubly periodic function with a real period and an imaginary period. The real period is of course the time it takes the pendulum to go through one full cycle. Paul Appell pointed out a physical interpretation of the imaginary period:^{[4]} if *θ*_{0} is the maximum angle of one pendulum and 180° − *θ*_{0} is the maximum angle of another, then the real period of each is the magnitude of the imaginary period of the other.

## See also

- Blackburn pendulum
- Conical pendulum
- Double pendulum
- Inverted pendulum
- Spring pendulum
- Mathieu function
- Pendulum equations (software)

## References

- ↑ {{#invoke:Citation/CS1|citation |CitationClass=journal }}
- ↑ Adlaj, S.
*An eloquent formula for the perimeter of an ellipse*, Notices of the AMS 59(8), pp. 1096-1097. - ↑ Physical Pendulum
- ↑ Paul Appell, "Sur une interprétation des valeurs imaginaires du temps en Mécanique",
*Comptes Rendus Hebdomadaires des Scéances de l'Académie des Sciences*, volume 87, number 1, July, 1878

## Further reading

- {{#invoke:citation/CS1|citation

|CitationClass=book }}

- {{#invoke:Citation/CS1|citation

|CitationClass=journal }}

- {{#invoke:Citation/CS1|citation

|CitationClass=journal }}

## External links

ar:رقاص (رياضيات) ca:Pèndol matemàtic cs:Matematické kyvadlo da:Matematisk pendul de:Mathematisches Pendel et:Matemaatiline pendel es:Péndulo simple eo:Matematika pendolo he:מטוטלת מתמטית kk:Математикалық және серіппелі маятниктердің тербелістері lt:Matematinė svyruoklė hu:Matematikai inga pt:Equação do pêndulo ru:Математический маятник sl:Matematično nihalo sr:Математичко клатно uk:Математичний маятник