Jump to navigation Jump to search

General

Display information for equation id:math.219374.3 on revision:219374

* Page found: Euler's formula (eq math.219374.3)

(force rerendering)

Cannot find the equation data in the database. Fetching from revision text.

Occurrences on the following pages:

Hash: fe9f6193db59b9dcf571d2bbe7cc7ef3

TeX (original user input):

 \ln(\cos x + i\sin x)=ix \

TeX (checked):

\ln(\cos x+i\sin x)=ix\

LaTeXML (experimental; uses MathML) rendering

MathML (3.766 KB / 735 B) :

ln ( cos x + i sin x ) = i x 𝑥 𝑖 𝑥 𝑖 𝑥 {\displaystyle\ln(\cos x+i\sin x)=ix\ }
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle\ln(\cos x+i\sin x)=ix\ }" display="inline">
  <semantics id="p1.1.m1.1a">
    <mrow id="p1.1.m1.1.14" xref="p1.1.m1.1.14.cmml">
      <mrow id="p1.1.m1.1.14.1.2" xref="p1.1.m1.1.14.1.1.cmml">
        <mi id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">ln</mi>
        <mo id="p1.1.m1.1.14.1.2a" xref="p1.1.m1.1.14.1.1.cmml"></mo>
        <mrow id="p1.1.m1.1.14.1.2.2" xref="p1.1.m1.1.14.1.1.cmml">
          <mo stretchy="false" id="p1.1.m1.1.2" xref="p1.1.m1.1.14.1.1.cmml">(</mo>
          <mrow id="p1.1.m1.1.14.1.2.1" xref="p1.1.m1.1.14.1.2.1.cmml">
            <mrow id="p1.1.m1.1.14.1.2.1.1" xref="p1.1.m1.1.14.1.2.1.1.cmml">
              <mi id="p1.1.m1.1.3" xref="p1.1.m1.1.3.cmml">cos</mi>
              <mo id="p1.1.m1.1.14.1.2.1.1a" xref="p1.1.m1.1.14.1.2.1.1.cmml"></mo>
              <mi id="p1.1.m1.1.4" xref="p1.1.m1.1.4.cmml">x</mi>
            </mrow>
            <mo id="p1.1.m1.1.5" xref="p1.1.m1.1.5.cmml">+</mo>
            <mrow id="p1.1.m1.1.14.1.2.1.2" xref="p1.1.m1.1.14.1.2.1.2.cmml">
              <mi id="p1.1.m1.1.6" xref="p1.1.m1.1.6.cmml">i</mi>
              <mo id="p1.1.m1.1.14.1.2.1.2.1" xref="p1.1.m1.1.14.1.2.1.2.1.cmml"></mo>
              <mrow id="p1.1.m1.1.14.1.2.1.2.2" xref="p1.1.m1.1.14.1.2.1.2.2.cmml">
                <mi id="p1.1.m1.1.7" xref="p1.1.m1.1.7.cmml">sin</mi>
                <mo id="p1.1.m1.1.14.1.2.1.2.2a" xref="p1.1.m1.1.14.1.2.1.2.2.cmml"></mo>
                <mi id="p1.1.m1.1.8" xref="p1.1.m1.1.8.cmml">x</mi>
              </mrow>
            </mrow>
          </mrow>
          <mo stretchy="false" id="p1.1.m1.1.9" xref="p1.1.m1.1.14.1.1.cmml">)</mo>
        </mrow>
      </mrow>
      <mo id="p1.1.m1.1.10" xref="p1.1.m1.1.10.cmml">=</mo>
      <mrow id="p1.1.m1.1.14.2" xref="p1.1.m1.1.14.2.cmml">
        <mi id="p1.1.m1.1.11" xref="p1.1.m1.1.11.cmml">i</mi>
        <mo id="p1.1.m1.1.14.2.1" xref="p1.1.m1.1.14.2.1.cmml"></mo>
        <mpadded width="+5pt" id="p1.1.m1.1.12" xref="p1.1.m1.1.12.cmml">
          <mi id="p1.1.m1.1.12a" xref="p1.1.m1.1.12.cmml">x</mi>
        </mpadded>
      </mrow>
    </mrow>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.14.cmml" xref="p1.1.m1.1.14">
        <eq id="p1.1.m1.1.10.cmml" xref="p1.1.m1.1.10"/>
        <apply id="p1.1.m1.1.14.1.1.cmml" xref="p1.1.m1.1.14.1.2">
          <ln id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1"/>
          <apply id="p1.1.m1.1.14.1.2.1.cmml" xref="p1.1.m1.1.14.1.2.1">
            <plus id="p1.1.m1.1.5.cmml" xref="p1.1.m1.1.5"/>
            <apply id="p1.1.m1.1.14.1.2.1.1.cmml" xref="p1.1.m1.1.14.1.2.1.1">
              <cos id="p1.1.m1.1.3.cmml" xref="p1.1.m1.1.3"/>
              <ci id="p1.1.m1.1.4.cmml" xref="p1.1.m1.1.4">𝑥</ci>
            </apply>
            <apply id="p1.1.m1.1.14.1.2.1.2.cmml" xref="p1.1.m1.1.14.1.2.1.2">
              <times id="p1.1.m1.1.14.1.2.1.2.1.cmml" xref="p1.1.m1.1.14.1.2.1.2.1"/>
              <ci id="p1.1.m1.1.6.cmml" xref="p1.1.m1.1.6">𝑖</ci>
              <apply id="p1.1.m1.1.14.1.2.1.2.2.cmml" xref="p1.1.m1.1.14.1.2.1.2.2">
                <sin id="p1.1.m1.1.7.cmml" xref="p1.1.m1.1.7"/>
                <ci id="p1.1.m1.1.8.cmml" xref="p1.1.m1.1.8">𝑥</ci>
              </apply>
            </apply>
          </apply>
        </apply>
        <apply id="p1.1.m1.1.14.2.cmml" xref="p1.1.m1.1.14.2">
          <times id="p1.1.m1.1.14.2.1.cmml" xref="p1.1.m1.1.14.2.1"/>
          <ci id="p1.1.m1.1.11.cmml" xref="p1.1.m1.1.11">𝑖</ci>
          <ci id="p1.1.m1.1.12.cmml" xref="p1.1.m1.1.12">𝑥</ci>
        </apply>
      </apply>
    </annotation-xml>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle\ln(\cos x+i\sin x)=ix\ }</annotation>
  </semantics>
</math>

SVG (8.003 KB / 3.002 KB) :

ln left-parenthesis cosine x plus i times sine x right-parenthesis equals i times x

MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


PNG (0 B / 8 B) :


Translations to Computer Algebra Systems

Translation to Maple

In Maple: ln(cos(x)+ i*sin(x))= i*x

Information about the conversion process:

\cos: Cosine; Example: \cos@@{z}

Will be translated to: cos($0)

Relevant links to definitions:

DLMF: http://dlmf.nist.gov/4.14#E2

Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=cos


\sin: Sine; Example: \sin@@{z}

Will be translated to: sin($0)

Relevant links to definitions:

DLMF: http://dlmf.nist.gov/4.14#E1

Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=sin


\ln: Natural logarithm; Example: \ln@@{z}

Will be translated to: ln($0)

Constraints: z != 0

Branch Cuts: (-\infty, 0]

Relevant links to definitions:

DLMF: http://dlmf.nist.gov/4.2#E2

Maple: https://www.maplesoft.com/support/help/maple/view.aspx?path=ln


I: You use a typical letter for a constant [the imaginary unit == the principal square root of -1].

We keep it like it is! But you should know that Maple uses I for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \iunit


i: the imaginary unit == the principal square root of -1 was translated to: i


Translation to Mathematica

In Mathematica: Log[Cos[x]+ i*Sin[x]]= i*x

Information about the conversion process:

\cos: Cosine; Example: \cos@@{z}

Will be translated to: Cos[$0]

Relevant links to definitions:

DLMF: http://dlmf.nist.gov/4.14#E2

Mathematica: https://reference.wolfram.com/language/ref/Cos.html


\sin: Sine; Example: \sin@@{z}

Will be translated to: Sin[$0]

Relevant links to definitions:

DLMF: http://dlmf.nist.gov/4.14#E1

Mathematica: https://reference.wolfram.com/language/ref/Sin.html


\ln: Natural logarithm; Example: \ln@@{z}

Will be translated to: Log[$0]

Constraints: z != 0

Branch Cuts: (-\infty, 0]

Relevant links to definitions:

DLMF: http://dlmf.nist.gov/4.2#E2

Mathematica: https://reference.wolfram.com/language/ref/Log.html


I: You use a typical letter for a constant [the imaginary unit == the principal square root of -1].

We keep it like it is! But you should know that Mathematica uses I for this constant.

If you want to translate it as a constant, use the corresponding DLMF macro \iunit


i: the imaginary unit == the principal square root of -1 was translated to: i


Similar pages

Calculated based on the variables occurring on the entire Euler's formula page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results