Jump to navigation
Jump to search
General
Display information for equation id:math.219741.2 on revision:219741
* Page found: Hausdorff maximal principle (eq math.219741.2)
(force rerendering)Occurrences on the following pages:
Hash: 27422b7a94e97b3fecaf9f1f9195bfcf
TeX (original user input):
\{S\mid T\subseteq S\subseteq A\mbox{ and S totally ordered}\}
TeX (checked):
\{S\mid T\subseteq S\subseteq A{\mbox{ and S totally ordered}}\}
LaTeXML (experimental; uses MathML) rendering
MathML (2.722 KB / 681 B) :

<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle\{S\mid T\subseteq S\subseteq A{\mbox{ and S totally ordered}}\}}" display="inline">
<semantics id="p1.1.m1.1a">
<mrow id="p1.1.m1.1.11" xref="p1.1.m1.1.11.1.cmml">
<mo stretchy="false" id="p1.1.m1.1.1" xref="p1.1.m1.1.11.1.1.cmml">{</mo>
<mi id="p1.1.m1.1.2" xref="p1.1.m1.1.2.cmml">S</mi>
<mo id="p1.1.m1.1.3" xref="p1.1.m1.1.11.1.1.cmml">∣</mo>
<mrow id="p1.1.m1.1.11.2" xref="p1.1.m1.1.11.2.cmml">
<mi id="p1.1.m1.1.4" xref="p1.1.m1.1.4.cmml">T</mi>
<mo id="p1.1.m1.1.5" xref="p1.1.m1.1.5.cmml">⊆</mo>
<mi id="p1.1.m1.1.6" xref="p1.1.m1.1.6.cmml">S</mi>
<mo id="p1.1.m1.1.7" xref="p1.1.m1.1.7.cmml">⊆</mo>
<mrow id="p1.1.m1.1.11.2.2" xref="p1.1.m1.1.11.2.2.cmml">
<mi id="p1.1.m1.1.8" xref="p1.1.m1.1.8.cmml">A</mi>
<mo id="p1.1.m1.1.11.2.2.1" xref="p1.1.m1.1.11.2.2.1.cmml"></mo>
<mtext id="p1.1.m1.1.9" xref="p1.1.m1.1.9a.cmml"> and S totally ordered</mtext>
</mrow>
</mrow>
<mo stretchy="false" id="p1.1.m1.1.10" xref="p1.1.m1.1.11.1.1.cmml">}</mo>
</mrow>
<annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
<apply id="p1.1.m1.1.11.1.cmml" xref="p1.1.m1.1.11">
<csymbol cd="latexml" id="p1.1.m1.1.11.1.1.cmml" xref="p1.1.m1.1.1">conditional-set</csymbol>
<ci id="p1.1.m1.1.2.cmml" xref="p1.1.m1.1.2">𝑆</ci>
<apply id="p1.1.m1.1.11.2.cmml" xref="p1.1.m1.1.11.2">
<and id="p1.1.m1.1.11.2a.cmml" xref="p1.1.m1.1.11.2"/>
<apply id="p1.1.m1.1.11.2b.cmml" xref="p1.1.m1.1.11.2">
<subset id="p1.1.m1.1.5.cmml" xref="p1.1.m1.1.5"/>
<ci id="p1.1.m1.1.4.cmml" xref="p1.1.m1.1.4">𝑇</ci>
<ci id="p1.1.m1.1.6.cmml" xref="p1.1.m1.1.6">𝑆</ci>
</apply>
<apply id="p1.1.m1.1.11.2c.cmml" xref="p1.1.m1.1.11.2">
<subset id="p1.1.m1.1.7.cmml" xref="p1.1.m1.1.7"/>
<share href="#p1.1.m1.1.6.cmml" id="p1.1.m1.1.11.2d.cmml" xref="p1.1.m1.1.11.2"/>
<apply id="p1.1.m1.1.11.2.2.cmml" xref="p1.1.m1.1.11.2.2">
<times id="p1.1.m1.1.11.2.2.1.cmml" xref="p1.1.m1.1.11.2.2.1"/>
<ci id="p1.1.m1.1.8.cmml" xref="p1.1.m1.1.8">𝐴</ci>
<ci id="p1.1.m1.1.9a.cmml" xref="p1.1.m1.1.9">
<mtext id="p1.1.m1.1.9.cmml" xref="p1.1.m1.1.9"> and S totally ordered</mtext>
</ci>
</apply>
</apply>
</apply>
</apply>
</annotation-xml>
<annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle\{S\mid T\subseteq S\subseteq A{\mbox{ and S totally ordered}}\}}</annotation>
</semantics>
</math>
SVG (11.68 KB / 4.845 KB) :
SVG (MathML can be enabled via browser plugin) rendering
MathML (922 B / 378 B) :

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\displaystyle \{S\mid T\subseteq S\subseteq A{\mbox{ and S totally ordered}}\}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo fence="false" stretchy="false">{</mo>
<mi>S</mi>
<mo>∣<!-- ∣ --></mo>
<mi>T</mi>
<mo>⊆<!-- ⊆ --></mo>
<mi>S</mi>
<mo>⊆<!-- ⊆ --></mo>
<mi>A</mi>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mtext> and S totally ordered</mtext>
</mstyle>
</mrow>
<mo fence="false" stretchy="false">}</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \{S\mid T\subseteq S\subseteq A{\mbox{ and S totally ordered}}\}}</annotation>
</semantics>
</math>
SVG (10.819 KB / 4.69 KB) :
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Hausdorff maximal principle page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results