Jump to navigation Jump to search


Display information for equation id:math.219747.45 on revision:219747

* Page found: Hilbert's basis theorem (eq math.219747.45)

(force rerendering)

Occurrences on the following pages:

Hash: e00270c1a6567249dc012a1111ef0722

TeX (original user input):

\mathfrak b_k

TeX (checked):

{\mathfrak {b}}_{k}

LaTeXML (experimental; uses MathML) rendering

MathML (896 B / 349 B) :

𝔟 k subscript 𝔟 𝑘 {\displaystyle{\displaystyle\mathfrak{b}_{k}}}
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle{\displaystyle\mathfrak{b}_{k}}}" display="inline">
  <semantics id="p1.1.m1.1a">
    <msub id="p1.1.m1.1.3" xref="p1.1.m1.1.3.cmml">
      <mi id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">𝔟</mi>
      <mi id="p1.1.m1.1.2.1" xref="p1.1.m1.1.2.1.cmml">k</mi>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.3.cmml" xref="p1.1.m1.1.3">
        <csymbol cd="ambiguous" id="p1.1.m1.1.3.1.cmml" xref="p1.1.m1.1.3">subscript</csymbol>
        <ci id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1">𝔟</ci>
        <ci id="p1.1.m1.1.2.1.cmml" xref="p1.1.m1.1.2.1">𝑘</ci>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle{\displaystyle\mathfrak{b}_{k}}}</annotation>

SVG (2.279 KB / 1.193 KB) :

German b Subscript k

SVG (MathML can be enabled via browser plugin) rendering

MathML (638 B / 281 B) :

b k {\displaystyle {\mathfrak {b}}_{k}}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\displaystyle {\mathfrak {b}}_{k}}">
    <mrow class="MJX-TeXAtom-ORD">
      <mstyle displaystyle="true" scriptlevel="0">
          <mrow class="MJX-TeXAtom-ORD">
            <mrow class="MJX-TeXAtom-ORD">
              <mi mathvariant="fraktur">b</mi>
          <mrow class="MJX-TeXAtom-ORD">
    <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {b}}_{k}}</annotation>

SVG (2.103 KB / 1.152 KB) :

{\displaystyle {\mathfrak {b}}_{k}}

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Hilbert's basis theorem page


MathML observations



no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results