Jump to navigation Jump to search

General

Display information for equation id:math.237768.11 on revision:237768

* Page found: Affine Lie algebra (eq math.237768.11)

(force rerendering)

Occurrences on the following pages:

Hash: 6a59c26dbd3df3096436672d2fdd7b62

TeX (original user input):

\widehat{\mathfrak{g}}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c,

TeX (checked):

{\widehat {\mathfrak {g}}}={\mathfrak {g}}\otimes \mathbb {C} [t,t^{-1}]\oplus \mathbb {C} c,

LaTeXML (experimental; uses MathML) rendering

MathML (4.815 KB / 1008 B) :

𝔤 ^ = 𝔤 [ t , t - 1 ] c , ^ 𝔤 direct-sum tensor-product 𝔤 𝑡 superscript 𝑡 1 𝑐 {\displaystyle{\widehat{{\mathfrak{g}}}}={\mathfrak{g}}\otimes{\mathbb{C}}[t,t% ^{{-1}}]\oplus{\mathbb{C}}c,}
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle{\widehat{{\mathfrak{g}}}}={\mathfrak{g}}\otimes{\mathbb{C}}[t,t%&#10;^{{-1}}]\oplus{\mathbb{C}}c,}" display="inline">
  <semantics id="p1.1.m1.1a">
    <mrow id="p1.1.m1.1.16" xref="p1.1.m1.1.16.2.cmml">
      <mrow id="p1.1.m1.1.16.2" xref="p1.1.m1.1.16.2.cmml">
        <mover accent="true" id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">
          <mi id="p1.1.m1.1.1.2" xref="p1.1.m1.1.1.2.cmml">𝔤</mi>
          <mo id="p1.1.m1.1.1.1" xref="p1.1.m1.1.1.1.cmml">^</mo>
        </mover>
        <mo id="p1.1.m1.1.2" xref="p1.1.m1.1.2.cmml">=</mo>
        <mrow id="p1.1.m1.1.16.2.1" xref="p1.1.m1.1.16.2.1.cmml">
          <mrow id="p1.1.m1.1.16.2.1.1" xref="p1.1.m1.1.16.2.1.1.cmml">
            <mrow id="p1.1.m1.1.16.2.1.1.2" xref="p1.1.m1.1.16.2.1.1.2.cmml">
              <mi id="p1.1.m1.1.3" xref="p1.1.m1.1.3.cmml">𝔤</mi>
              <mo id="p1.1.m1.1.4" xref="p1.1.m1.1.4.cmml"></mo>
              <mi id="p1.1.m1.1.5" xref="p1.1.m1.1.5.cmml"></mi>
            </mrow>
            <mo id="p1.1.m1.1.16.2.1.1.1" xref="p1.1.m1.1.16.2.1.1.1.cmml"></mo>
            <mrow id="p1.1.m1.1.16.2.1.1.3" xref="p1.1.m1.1.16.2.1.1.3.1.cmml">
              <mo stretchy="false" id="p1.1.m1.1.6" xref="p1.1.m1.1.16.2.1.1.3.1.cmml">[</mo>
              <mi id="p1.1.m1.1.7" xref="p1.1.m1.1.7.cmml">t</mi>
              <mo id="p1.1.m1.1.8" xref="p1.1.m1.1.16.2.1.1.3.1.cmml">,</mo>
              <msup id="p1.1.m1.1.16.2.1.1.3.2" xref="p1.1.m1.1.16.2.1.1.3.2.cmml">
                <mi id="p1.1.m1.1.9" xref="p1.1.m1.1.9.cmml">t</mi>
                <mrow id="p1.1.m1.1.10.1" xref="p1.1.m1.1.10.1.cmml">
                  <mo id="p1.1.m1.1.10.1.1" xref="p1.1.m1.1.10.1.1.cmml">-</mo>
                  <mn id="p1.1.m1.1.10.1.2" xref="p1.1.m1.1.10.1.2.cmml">1</mn>
                </mrow>
              </msup>
              <mo stretchy="false" id="p1.1.m1.1.11" xref="p1.1.m1.1.16.2.1.1.3.1.cmml">]</mo>
            </mrow>
          </mrow>
          <mo id="p1.1.m1.1.12" xref="p1.1.m1.1.12.cmml"></mo>
          <mrow id="p1.1.m1.1.16.2.1.2" xref="p1.1.m1.1.16.2.1.2.cmml">
            <mi id="p1.1.m1.1.13" xref="p1.1.m1.1.13.cmml"></mi>
            <mo id="p1.1.m1.1.16.2.1.2.1" xref="p1.1.m1.1.16.2.1.2.1.cmml"></mo>
            <mi id="p1.1.m1.1.14" xref="p1.1.m1.1.14.cmml">c</mi>
          </mrow>
        </mrow>
      </mrow>
      <mo id="p1.1.m1.1.15" xref="p1.1.m1.1.16.2.cmml">,</mo>
    </mrow>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.16.2.cmml" xref="p1.1.m1.1.16">
        <eq id="p1.1.m1.1.2.cmml" xref="p1.1.m1.1.2"/>
        <apply id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1">
          <ci id="p1.1.m1.1.1.1.cmml" xref="p1.1.m1.1.1.1">^</ci>
          <ci id="p1.1.m1.1.1.2.cmml" xref="p1.1.m1.1.1.2">𝔤</ci>
        </apply>
        <apply id="p1.1.m1.1.16.2.1.cmml" xref="p1.1.m1.1.16.2.1">
          <csymbol cd="latexml" id="p1.1.m1.1.12.cmml" xref="p1.1.m1.1.12">direct-sum</csymbol>
          <apply id="p1.1.m1.1.16.2.1.1.cmml" xref="p1.1.m1.1.16.2.1.1">
            <times id="p1.1.m1.1.16.2.1.1.1.cmml" xref="p1.1.m1.1.16.2.1.1.1"/>
            <apply id="p1.1.m1.1.16.2.1.1.2.cmml" xref="p1.1.m1.1.16.2.1.1.2">
              <csymbol cd="latexml" id="p1.1.m1.1.4.cmml" xref="p1.1.m1.1.4">tensor-product</csymbol>
              <ci id="p1.1.m1.1.3.cmml" xref="p1.1.m1.1.3">𝔤</ci>
              <ci id="p1.1.m1.1.5.cmml" xref="p1.1.m1.1.5"></ci>
            </apply>
            <interval closure="closed" id="p1.1.m1.1.16.2.1.1.3.1.cmml" xref="p1.1.m1.1.16.2.1.1.3">
              <ci id="p1.1.m1.1.7.cmml" xref="p1.1.m1.1.7">𝑡</ci>
              <apply id="p1.1.m1.1.16.2.1.1.3.2.cmml" xref="p1.1.m1.1.16.2.1.1.3.2">
                <csymbol cd="ambiguous" id="p1.1.m1.1.16.2.1.1.3.2.1.cmml" xref="p1.1.m1.1.16.2.1.1.3.2">superscript</csymbol>
                <ci id="p1.1.m1.1.9.cmml" xref="p1.1.m1.1.9">𝑡</ci>
                <apply id="p1.1.m1.1.10.1.cmml" xref="p1.1.m1.1.10.1">
                  <minus id="p1.1.m1.1.10.1.1.cmml" xref="p1.1.m1.1.10.1.1"/>
                  <cn type="integer" id="p1.1.m1.1.10.1.2.cmml" xref="p1.1.m1.1.10.1.2">1</cn>
                </apply>
              </apply>
            </interval>
          </apply>
          <apply id="p1.1.m1.1.16.2.1.2.cmml" xref="p1.1.m1.1.16.2.1.2">
            <times id="p1.1.m1.1.16.2.1.2.1.cmml" xref="p1.1.m1.1.16.2.1.2.1"/>
            <ci id="p1.1.m1.1.13.cmml" xref="p1.1.m1.1.13"></ci>
            <ci id="p1.1.m1.1.14.cmml" xref="p1.1.m1.1.14">𝑐</ci>
          </apply>
        </apply>
      </apply>
    </annotation-xml>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle{\widehat{{\mathfrak{g}}}}={\mathfrak{g}}\otimes{\mathbb{C}}[t,t%
^{{-1}}]\oplus{\mathbb{C}}c,}</annotation>
  </semantics>
</math>

SVG (8.145 KB / 2.961 KB) :

ModifyingAbove German g With caret equals German g circled-times double-struck upper C times left-bracket t comma t Superscript negative 1 Baseline right-bracket circled-plus double-struck upper C times c comma

SVG (MathML can be enabled via browser plugin) rendering

MathML (1.565 KB / 475 B) :

g ^ = g C [ t , t 1 ] C c , {\displaystyle {\widehat {\mathfrak {g}}}={\mathfrak {g}}\otimes \mathbb {C} [t,t^{-1}]\oplus \mathbb {C} c,}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\displaystyle {\widehat {\mathfrak {g}}}={\mathfrak {g}}\otimes \mathbb {C} [t,t^{-1}]\oplus \mathbb {C} c,}">
  <semantics>
    <mrow class="MJX-TeXAtom-ORD">
      <mstyle displaystyle="true" scriptlevel="0">
        <mrow class="MJX-TeXAtom-ORD">
          <mrow class="MJX-TeXAtom-ORD">
            <mover>
              <mrow class="MJX-TeXAtom-ORD">
                <mi mathvariant="fraktur">g</mi>
              </mrow>
              <mo>&#x005E;<!-- ^ --></mo>
            </mover>
          </mrow>
        </mrow>
        <mo>=</mo>
        <mrow class="MJX-TeXAtom-ORD">
          <mrow class="MJX-TeXAtom-ORD">
            <mi mathvariant="fraktur">g</mi>
          </mrow>
        </mrow>
        <mo>&#x2297;<!-- ⊗ --></mo>
        <mrow class="MJX-TeXAtom-ORD">
          <mi mathvariant="double-struck">C</mi>
        </mrow>
        <mo stretchy="false">[</mo>
        <mi>t</mi>
        <mo>,</mo>
        <msup>
          <mi>t</mi>
          <mrow class="MJX-TeXAtom-ORD">
            <mo>&#x2212;<!-- − --></mo>
            <mn>1</mn>
          </mrow>
        </msup>
        <mo stretchy="false">]</mo>
        <mo>&#x2295;<!-- ⊕ --></mo>
        <mrow class="MJX-TeXAtom-ORD">
          <mi mathvariant="double-struck">C</mi>
        </mrow>
        <mi>c</mi>
        <mo>,</mo>
      </mstyle>
    </mrow>
    <annotation encoding="application/x-tex">{\displaystyle {\widehat {\mathfrak {g}}}={\mathfrak {g}}\otimes \mathbb {C} [t,t^{-1}]\oplus \mathbb {C} c,}</annotation>
  </semantics>
</math>

SVG (6.326 KB / 2.663 KB) :

{\displaystyle {\widehat {\mathfrak {g}}}={\mathfrak {g}}\otimes \mathbb {C} [t,t^{-1}]\oplus \mathbb {C} c,}

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Affine Lie algebra page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results