Jump to navigation Jump to search

General

Display information for equation id:math.242012.0 on revision:242012

* Page found: Radial basis function (eq math.242012.0)

(force rerendering)

Cannot find the equation data in the database. Fetching from revision text.

Occurrences on the following pages:

Hash: c151acb7f5e06a565930f612e2ed193d

TeX (original user input):

\phi(\mathbf{x}) = \phi(\|\mathbf{x}\|)

TeX (checked):

\phi (\mathbf {x} )=\phi (\|\mathbf {x} \|)

LaTeXML (experimental; uses MathML) rendering

MathML (2.67 KB / 605 B) :

ϕ ( 𝐱 ) = ϕ ( 𝐱 ) italic-ϕ 𝐱 italic-ϕ norm 𝐱 {\displaystyle\phi({\mathbf{x}})=\phi(\|{\mathbf{x}}\|)}
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle\phi({\mathbf{x}})=\phi(\|{\mathbf{x}}\|)}" display="inline">
  <semantics id="p1.1.m1.1a">
    <mrow id="p1.1.m1.1.12" xref="p1.1.m1.1.12.cmml">
      <mrow id="p1.1.m1.1.12.1" xref="p1.1.m1.1.12.1.cmml">
        <mi id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">ϕ</mi>
        <mo id="p1.1.m1.1.12.1.1" xref="p1.1.m1.1.12.1.1.cmml"></mo>
        <mrow id="p1.1.m1.1.12.1.2" xref="p1.1.m1.1.12.1.cmml">
          <mo stretchy="false" id="p1.1.m1.1.2" xref="p1.1.m1.1.12.1.cmml">(</mo>
          <mi id="p1.1.m1.1.3" xref="p1.1.m1.1.3.cmml">𝐱</mi>
          <mo stretchy="false" id="p1.1.m1.1.4" xref="p1.1.m1.1.12.1.cmml">)</mo>
        </mrow>
      </mrow>
      <mo id="p1.1.m1.1.5" xref="p1.1.m1.1.5.cmml">=</mo>
      <mrow id="p1.1.m1.1.12.2" xref="p1.1.m1.1.12.2.cmml">
        <mi id="p1.1.m1.1.6" xref="p1.1.m1.1.6.cmml">ϕ</mi>
        <mo id="p1.1.m1.1.12.2.1" xref="p1.1.m1.1.12.2.1.cmml"></mo>
        <mrow id="p1.1.m1.1.12.2.2" xref="p1.1.m1.1.12.2.cmml">
          <mo stretchy="false" id="p1.1.m1.1.7" xref="p1.1.m1.1.12.2.cmml">(</mo>
          <mrow id="p1.1.m1.1.12.2.2.2" xref="p1.1.m1.1.12.2.2.2.1.cmml">
            <mo id="p1.1.m1.1.8" xref="p1.1.m1.1.12.2.2.2.1.1.cmml"></mo>
            <mi id="p1.1.m1.1.9" xref="p1.1.m1.1.9.cmml">𝐱</mi>
            <mo id="p1.1.m1.1.10" xref="p1.1.m1.1.12.2.2.2.1.1.cmml"></mo>
          </mrow>
          <mo stretchy="false" id="p1.1.m1.1.11" xref="p1.1.m1.1.12.2.cmml">)</mo>
        </mrow>
      </mrow>
    </mrow>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.12.cmml" xref="p1.1.m1.1.12">
        <eq id="p1.1.m1.1.5.cmml" xref="p1.1.m1.1.5"/>
        <apply id="p1.1.m1.1.12.1.cmml" xref="p1.1.m1.1.12.1">
          <times id="p1.1.m1.1.12.1.1.cmml" xref="p1.1.m1.1.12.1.1"/>
          <ci id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1">italic-ϕ</ci>
          <ci id="p1.1.m1.1.3.cmml" xref="p1.1.m1.1.3">𝐱</ci>
        </apply>
        <apply id="p1.1.m1.1.12.2.cmml" xref="p1.1.m1.1.12.2">
          <times id="p1.1.m1.1.12.2.1.cmml" xref="p1.1.m1.1.12.2.1"/>
          <ci id="p1.1.m1.1.6.cmml" xref="p1.1.m1.1.6">italic-ϕ</ci>
          <apply id="p1.1.m1.1.12.2.2.2.1.cmml" xref="p1.1.m1.1.12.2.2.2">
            <csymbol cd="latexml" id="p1.1.m1.1.12.2.2.2.1.1.cmml" xref="p1.1.m1.1.8">norm</csymbol>
            <ci id="p1.1.m1.1.9.cmml" xref="p1.1.m1.1.9">𝐱</ci>
          </apply>
        </apply>
      </apply>
    </annotation-xml>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle\phi({\mathbf{x}})=\phi(\|{\mathbf{x}}\|)}</annotation>
  </semantics>
</math>

SVG (4.589 KB / 1.67 KB) :

phi times left-parenthesis bold x right-parenthesis equals phi times left-parenthesis parallel-to bold x parallel-to right-parenthesis

MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


PNG (0 B / 8 B) :


Translations to Computer Algebra Systems

Translation to Maple

In Maple: phi*(x)= phi*(abs(x))

Information about the conversion process:

\phi: Could be the golden ratio == golden mean == golden section == extreme and mean ratio == medial section == divine proportion == divine section == golden proportion == golden cut == golden number.

But this system don't know how to translate it as a constant. It was translated as a general letter.



Translation to Mathematica

In Mathematica: \[Phi]*(x)= \[Phi]*(Abs[x])

Information about the conversion process:

\phi: Could be the golden ratio == golden mean == golden section == extreme and mean ratio == medial section == divine proportion == divine section == golden proportion == golden cut == golden number.

But this system don't know how to translate it as a constant. It was translated as a general letter.



Similar pages

Calculated based on the variables occurring on the entire Radial basis function page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results