Jump to navigation Jump to search

General

Display information for equation id:math.249581.101 on revision:249581

* Page found: Pendulum (mathematics) (eq math.249581.101)

(force rerendering)

Cannot find the equation data in the database. Fetching from revision text.

Occurrences on the following pages:

Hash: a55d594834714ffe13369962e71c56b5

TeX (original user input):

f = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{mgL}{I}}

TeX (checked):

f={\frac {1}{T}}={\frac {1}{2\pi }}{\sqrt {\frac {mgL}{I}}}

LaTeXML (experimental; uses MathML) rendering

MathML (4.851 KB / 958 B) :

f = 1 T = 1 2 π m g L I 𝑓 1 𝑇 1 2 𝜋 𝑚 𝑔 𝐿 𝐼 {\displaystyle f={\frac{1}{T}}={\frac{1}{2\pi}}{\sqrt{{\frac{mgL}{I}}}}}
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle f={\frac{1}{T}}={\frac{1}{2\pi}}{\sqrt{{\frac{mgL}{I}}}}}" display="inline">
  <semantics id="p1.1.m1.1a">
    <mrow id="p1.1.m1.1.7" xref="p1.1.m1.1.7.cmml">
      <mi id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">f</mi>
      <mo id="p1.1.m1.1.2" xref="p1.1.m1.1.2.cmml">=</mo>
      <mstyle displaystyle="true" id="p1.1.m1.1.3" xref="p1.1.m1.1.3.cmml">
        <mfrac id="p1.1.m1.1.3a" xref="p1.1.m1.1.3.cmml">
          <mn id="p1.1.m1.1.3.2" xref="p1.1.m1.1.3.2.cmml">1</mn>
          <mi id="p1.1.m1.1.3.3" xref="p1.1.m1.1.3.3.cmml">T</mi>
        </mfrac>
      </mstyle>
      <mo id="p1.1.m1.1.4" xref="p1.1.m1.1.4.cmml">=</mo>
      <mrow id="p1.1.m1.1.7.2" xref="p1.1.m1.1.7.2.cmml">
        <mstyle displaystyle="true" id="p1.1.m1.1.5" xref="p1.1.m1.1.5.cmml">
          <mfrac id="p1.1.m1.1.5a" xref="p1.1.m1.1.5.cmml">
            <mn id="p1.1.m1.1.5.2" xref="p1.1.m1.1.5.2.cmml">1</mn>
            <mrow id="p1.1.m1.1.5.3" xref="p1.1.m1.1.5.3.cmml">
              <mn id="p1.1.m1.1.5.3.1" xref="p1.1.m1.1.5.3.1.cmml">2</mn>
              <mo id="p1.1.m1.1.5.3.3" xref="p1.1.m1.1.5.3.3.cmml"></mo>
              <mi id="p1.1.m1.1.5.3.2" xref="p1.1.m1.1.5.3.2.cmml">π</mi>
            </mrow>
          </mfrac>
        </mstyle>
        <mo id="p1.1.m1.1.7.2.1" xref="p1.1.m1.1.7.2.1.cmml"></mo>
        <msqrt id="p1.1.m1.1.6" xref="p1.1.m1.1.6.cmml">
          <mstyle displaystyle="true" id="p1.1.m1.1.6.2" xref="p1.1.m1.1.6.2.cmml">
            <mfrac id="p1.1.m1.1.6.2a" xref="p1.1.m1.1.6.2.cmml">
              <mrow id="p1.1.m1.1.6.2.1.2" xref="p1.1.m1.1.6.2.1.2.cmml">
                <mi id="p1.1.m1.1.6.2.1.2.1" xref="p1.1.m1.1.6.2.1.2.1.cmml">m</mi>
                <mo id="p1.1.m1.1.6.2.1.2.4" xref="p1.1.m1.1.6.2.1.2.4.cmml"></mo>
                <mi id="p1.1.m1.1.6.2.1.2.2" xref="p1.1.m1.1.6.2.1.2.2.cmml">g</mi>
                <mo id="p1.1.m1.1.6.2.1.2.4a" xref="p1.1.m1.1.6.2.1.2.4.cmml"></mo>
                <mi id="p1.1.m1.1.6.2.1.2.3" xref="p1.1.m1.1.6.2.1.2.3.cmml">L</mi>
              </mrow>
              <mi id="p1.1.m1.1.6.2.1.3" xref="p1.1.m1.1.6.2.1.3.cmml">I</mi>
            </mfrac>
          </mstyle>
        </msqrt>
      </mrow>
    </mrow>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.7.cmml" xref="p1.1.m1.1.7">
        <and id="p1.1.m1.1.7a.cmml" xref="p1.1.m1.1.7"/>
        <apply id="p1.1.m1.1.7b.cmml" xref="p1.1.m1.1.7">
          <eq id="p1.1.m1.1.2.cmml" xref="p1.1.m1.1.2"/>
          <ci id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1">𝑓</ci>
          <apply id="p1.1.m1.1.3.cmml" xref="p1.1.m1.1.3">
            <divide id="p1.1.m1.1.3.1.cmml" xref="p1.1.m1.1.3"/>
            <cn type="integer" id="p1.1.m1.1.3.2.cmml" xref="p1.1.m1.1.3.2">1</cn>
            <ci id="p1.1.m1.1.3.3.cmml" xref="p1.1.m1.1.3.3">𝑇</ci>
          </apply>
        </apply>
        <apply id="p1.1.m1.1.7c.cmml" xref="p1.1.m1.1.7">
          <eq id="p1.1.m1.1.4.cmml" xref="p1.1.m1.1.4"/>
          <share href="#p1.1.m1.1.3.cmml" id="p1.1.m1.1.7d.cmml" xref="p1.1.m1.1.7"/>
          <apply id="p1.1.m1.1.7.2.cmml" xref="p1.1.m1.1.7.2">
            <times id="p1.1.m1.1.7.2.1.cmml" xref="p1.1.m1.1.7.2.1"/>
            <apply id="p1.1.m1.1.5.cmml" xref="p1.1.m1.1.5">
              <divide id="p1.1.m1.1.5.1.cmml" xref="p1.1.m1.1.5"/>
              <cn type="integer" id="p1.1.m1.1.5.2.cmml" xref="p1.1.m1.1.5.2">1</cn>
              <apply id="p1.1.m1.1.5.3.cmml" xref="p1.1.m1.1.5.3">
                <times id="p1.1.m1.1.5.3.3.cmml" xref="p1.1.m1.1.5.3.3"/>
                <cn type="integer" id="p1.1.m1.1.5.3.1.cmml" xref="p1.1.m1.1.5.3.1">2</cn>
                <ci id="p1.1.m1.1.5.3.2.cmml" xref="p1.1.m1.1.5.3.2">𝜋</ci>
              </apply>
            </apply>
            <apply id="p1.1.m1.1.6.cmml" xref="p1.1.m1.1.6">
              <root id="p1.1.m1.1.6a.cmml" xref="p1.1.m1.1.6"/>
              <apply id="p1.1.m1.1.6.2.cmml" xref="p1.1.m1.1.6.2">
                <divide id="p1.1.m1.1.6.2.1.1.cmml" xref="p1.1.m1.1.6.2"/>
                <apply id="p1.1.m1.1.6.2.1.2.cmml" xref="p1.1.m1.1.6.2.1.2">
                  <times id="p1.1.m1.1.6.2.1.2.4.cmml" xref="p1.1.m1.1.6.2.1.2.4"/>
                  <ci id="p1.1.m1.1.6.2.1.2.1.cmml" xref="p1.1.m1.1.6.2.1.2.1">𝑚</ci>
                  <ci id="p1.1.m1.1.6.2.1.2.2.cmml" xref="p1.1.m1.1.6.2.1.2.2">𝑔</ci>
                  <ci id="p1.1.m1.1.6.2.1.2.3.cmml" xref="p1.1.m1.1.6.2.1.2.3">𝐿</ci>
                </apply>
                <ci id="p1.1.m1.1.6.2.1.3.cmml" xref="p1.1.m1.1.6.2.1.3">𝐼</ci>
              </apply>
            </apply>
          </apply>
        </apply>
      </apply>
    </annotation-xml>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle f={\frac{1}{T}}={\frac{1}{2\pi}}{\sqrt{{\frac{mgL}{I}}}}}</annotation>
  </semantics>
</math>

SVG (9.134 KB / 3.555 KB) :

f equals StartFraction 1 Over upper T EndFraction equals StartFraction 1 Over 2 times pi EndFraction times StartRoot StartFraction m times g times upper L Over upper I EndFraction EndRoot

MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


PNG (0 B / 8 B) :


Translations to Computer Algebra Systems

Translation to Maple

In Maple: f =(1)/(T)=(1)/(2*pi)*sqrt((m*g*L)/(I))

Information about the conversion process:

\pi: Could be the ratio of a circle's circumference to its diameter == Archimedes' constant.

But it is also a Greek letter. Be aware, that this program translated the letter as a normal Greek letter and not as a constant!
Use the DLMF-Macro \cpi to translate \pi as a constant.



Translation to Mathematica

In Mathematica: f =Divide[1,T]=Divide[1,2*\[Pi]]*Sqrt[Divide[m*g*L,I]]

Information about the conversion process:

\pi: Could be the ratio of a circle's circumference to its diameter == Archimedes' constant.

But it is also a Greek letter. Be aware, that this program translated the letter as a normal Greek letter and not as a constant!
Use the DLMF-Macro \cpi to translate \pi as a constant.



Similar pages

Calculated based on the variables occurring on the entire Pendulum (mathematics) page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results