Jump to navigation Jump to search

General

Display information for equation id:math.259862.44 on revision:259862

* Page found: Gauss's lemma (Riemannian geometry) (eq math.259862.44)

(force rerendering)

Occurrences on the following pages:

Hash: 4b6955622d6143de2cf909c24bb306fe

TeX (original user input):

\alpha'(0):=v\in T_vT_pM\cong T_pM

TeX (checked):

\alpha '(0):=v\in T_{v}T_{p}M\cong T_{p}M

LaTeXML (experimental; uses MathML) rendering

MathML (5.315 KB / 983 B) :

α ( 0 ) := v T v T p M T p M assign superscript 𝛼 0 𝑣 subscript 𝑇 𝑣 subscript 𝑇 𝑝 𝑀 subscript 𝑇 𝑝 𝑀 {\displaystyle\alpha^{\prime}(0):=v\in T_{v}T_{p}M\cong T_{p}M}
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle\alpha^{\prime}(0):=v\in T_{v}T_{p}M\cong T_{p}M}" display="inline">
  <semantics id="p1.1.m1.1a">
    <mrow id="p1.1.m1.1.19" xref="p1.1.m1.1.19.cmml">
      <mrow id="p1.1.m1.1.19.2" xref="p1.1.m1.1.19.2.cmml">
        <msup id="p1.1.m1.1.19.2.2" xref="p1.1.m1.1.19.2.2.cmml">
          <mi id="p1.1.m1.1.1" xref="p1.1.m1.1.1.cmml">α</mi>
          <mo id="p1.1.m1.1.2.1" xref="p1.1.m1.1.2.1.cmml"></mo>
        </msup>
        <mo id="p1.1.m1.1.19.2.1" xref="p1.1.m1.1.19.2.1.cmml"></mo>
        <mrow id="p1.1.m1.1.19.2.3" xref="p1.1.m1.1.19.2.cmml">
          <mo stretchy="false" id="p1.1.m1.1.3" xref="p1.1.m1.1.19.2.cmml">(</mo>
          <mn id="p1.1.m1.1.4" xref="p1.1.m1.1.4.cmml">0</mn>
          <mo stretchy="false" id="p1.1.m1.1.5" xref="p1.1.m1.1.19.2.cmml">)</mo>
        </mrow>
      </mrow>
      <mo id="p1.1.m1.1.7" xref="p1.1.m1.1.7.cmml">:=</mo>
      <mi id="p1.1.m1.1.8" xref="p1.1.m1.1.8.cmml">v</mi>
      <mo id="p1.1.m1.1.9" xref="p1.1.m1.1.9.cmml"></mo>
      <mrow id="p1.1.m1.1.19.3" xref="p1.1.m1.1.19.3.cmml">
        <msub id="p1.1.m1.1.19.3.2" xref="p1.1.m1.1.19.3.2.cmml">
          <mi id="p1.1.m1.1.10" xref="p1.1.m1.1.10.cmml">T</mi>
          <mi id="p1.1.m1.1.11.1" xref="p1.1.m1.1.11.1.cmml">v</mi>
        </msub>
        <mo id="p1.1.m1.1.19.3.1" xref="p1.1.m1.1.19.3.1.cmml"></mo>
        <msub id="p1.1.m1.1.19.3.3" xref="p1.1.m1.1.19.3.3.cmml">
          <mi id="p1.1.m1.1.12" xref="p1.1.m1.1.12.cmml">T</mi>
          <mi id="p1.1.m1.1.13.1" xref="p1.1.m1.1.13.1.cmml">p</mi>
        </msub>
        <mo id="p1.1.m1.1.19.3.1a" xref="p1.1.m1.1.19.3.1.cmml"></mo>
        <mi id="p1.1.m1.1.14" xref="p1.1.m1.1.14.cmml">M</mi>
      </mrow>
      <mo id="p1.1.m1.1.15" xref="p1.1.m1.1.15.cmml"></mo>
      <mrow id="p1.1.m1.1.19.4" xref="p1.1.m1.1.19.4.cmml">
        <msub id="p1.1.m1.1.19.4.2" xref="p1.1.m1.1.19.4.2.cmml">
          <mi id="p1.1.m1.1.16" xref="p1.1.m1.1.16.cmml">T</mi>
          <mi id="p1.1.m1.1.17.1" xref="p1.1.m1.1.17.1.cmml">p</mi>
        </msub>
        <mo id="p1.1.m1.1.19.4.1" xref="p1.1.m1.1.19.4.1.cmml"></mo>
        <mi id="p1.1.m1.1.18" xref="p1.1.m1.1.18.cmml">M</mi>
      </mrow>
    </mrow>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.19.cmml" xref="p1.1.m1.1.19">
        <and id="p1.1.m1.1.19a.cmml" xref="p1.1.m1.1.19"/>
        <apply id="p1.1.m1.1.19b.cmml" xref="p1.1.m1.1.19">
          <csymbol cd="latexml" id="p1.1.m1.1.7.cmml" xref="p1.1.m1.1.7">assign</csymbol>
          <apply id="p1.1.m1.1.19.2.cmml" xref="p1.1.m1.1.19.2">
            <times id="p1.1.m1.1.19.2.1.cmml" xref="p1.1.m1.1.19.2.1"/>
            <apply id="p1.1.m1.1.19.2.2.cmml" xref="p1.1.m1.1.19.2.2">
              <csymbol cd="ambiguous" id="p1.1.m1.1.19.2.2.1.cmml" xref="p1.1.m1.1.19.2.2">superscript</csymbol>
              <ci id="p1.1.m1.1.1.cmml" xref="p1.1.m1.1.1">𝛼</ci>
              <ci id="p1.1.m1.1.2.1.cmml" xref="p1.1.m1.1.2.1"></ci>
            </apply>
            <cn type="integer" id="p1.1.m1.1.4.cmml" xref="p1.1.m1.1.4">0</cn>
          </apply>
          <ci id="p1.1.m1.1.8.cmml" xref="p1.1.m1.1.8">𝑣</ci>
        </apply>
        <apply id="p1.1.m1.1.19c.cmml" xref="p1.1.m1.1.19">
          <in id="p1.1.m1.1.9.cmml" xref="p1.1.m1.1.9"/>
          <share href="#p1.1.m1.1.8.cmml" id="p1.1.m1.1.19d.cmml" xref="p1.1.m1.1.19"/>
          <apply id="p1.1.m1.1.19.3.cmml" xref="p1.1.m1.1.19.3">
            <times id="p1.1.m1.1.19.3.1.cmml" xref="p1.1.m1.1.19.3.1"/>
            <apply id="p1.1.m1.1.19.3.2.cmml" xref="p1.1.m1.1.19.3.2">
              <csymbol cd="ambiguous" id="p1.1.m1.1.19.3.2.1.cmml" xref="p1.1.m1.1.19.3.2">subscript</csymbol>
              <ci id="p1.1.m1.1.10.cmml" xref="p1.1.m1.1.10">𝑇</ci>
              <ci id="p1.1.m1.1.11.1.cmml" xref="p1.1.m1.1.11.1">𝑣</ci>
            </apply>
            <apply id="p1.1.m1.1.19.3.3.cmml" xref="p1.1.m1.1.19.3.3">
              <csymbol cd="ambiguous" id="p1.1.m1.1.19.3.3.1.cmml" xref="p1.1.m1.1.19.3.3">subscript</csymbol>
              <ci id="p1.1.m1.1.12.cmml" xref="p1.1.m1.1.12">𝑇</ci>
              <ci id="p1.1.m1.1.13.1.cmml" xref="p1.1.m1.1.13.1">𝑝</ci>
            </apply>
            <ci id="p1.1.m1.1.14.cmml" xref="p1.1.m1.1.14">𝑀</ci>
          </apply>
        </apply>
        <apply id="p1.1.m1.1.19e.cmml" xref="p1.1.m1.1.19">
          <approx id="p1.1.m1.1.15.cmml" xref="p1.1.m1.1.15"/>
          <share href="#p1.1.m1.1.19.3.cmml" id="p1.1.m1.1.19f.cmml" xref="p1.1.m1.1.19"/>
          <apply id="p1.1.m1.1.19.4.cmml" xref="p1.1.m1.1.19.4">
            <times id="p1.1.m1.1.19.4.1.cmml" xref="p1.1.m1.1.19.4.1"/>
            <apply id="p1.1.m1.1.19.4.2.cmml" xref="p1.1.m1.1.19.4.2">
              <csymbol cd="ambiguous" id="p1.1.m1.1.19.4.2.1.cmml" xref="p1.1.m1.1.19.4.2">subscript</csymbol>
              <ci id="p1.1.m1.1.16.cmml" xref="p1.1.m1.1.16">𝑇</ci>
              <ci id="p1.1.m1.1.17.1.cmml" xref="p1.1.m1.1.17.1">𝑝</ci>
            </apply>
            <ci id="p1.1.m1.1.18.cmml" xref="p1.1.m1.1.18">𝑀</ci>
          </apply>
        </apply>
      </apply>
    </annotation-xml>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle\alpha^{\prime}(0):=v\in T_{v}T_{p}M\cong T_{p}M}</annotation>
  </semantics>
</math>

SVG (9.432 KB / 3.585 KB) :

alpha prime times left-parenthesis 0 right-parenthesis colon equals v element-of upper T Subscript v Baseline times upper T Subscript p Baseline times upper M approximately-equals upper T Subscript p Baseline times upper M

SVG with PNG fallback (MathML can be enabled via browser plugin) rendering

MathML (1.117 KB / 399 B) :

α ( 0 ) := v T v T p M T p M {\displaystyle \alpha '(0):=v\in T_{v}T_{p}M\cong T_{p}M}
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\displaystyle \alpha '(0):=v\in T_{v}T_{p}M\cong T_{p}M}">
  <semantics>
    <mrow class="MJX-TeXAtom-ORD">
      <mstyle displaystyle="true" scriptlevel="0">
        <msup>
          <mi>&#x03B1;<!-- α --></mi>
          <mo>&#x2032;</mo>
        </msup>
        <mo stretchy="false">(</mo>
        <mn>0</mn>
        <mo stretchy="false">)</mo>
        <mo>:=</mo>
        <mi>v</mi>
        <mo>&#x2208;<!-- ∈ --></mo>
        <msub>
          <mi>T</mi>
          <mrow class="MJX-TeXAtom-ORD">
            <mi>v</mi>
          </mrow>
        </msub>
        <msub>
          <mi>T</mi>
          <mrow class="MJX-TeXAtom-ORD">
            <mi>p</mi>
          </mrow>
        </msub>
        <mi>M</mi>
        <mo>&#x2245;<!-- ≅ --></mo>
        <msub>
          <mi>T</mi>
          <mrow class="MJX-TeXAtom-ORD">
            <mi>p</mi>
          </mrow>
        </msub>
        <mi>M</mi>
      </mstyle>
    </mrow>
    <annotation encoding="application/x-tex">{\displaystyle \alpha '(0):=v\in T_{v}T_{p}M\cong T_{p}M}</annotation>
  </semantics>
</math>

SVG (7.609 KB / 3.299 KB) :

{\displaystyle \alpha '(0):=v\in T_{v}T_{p}M\cong T_{p}M}

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Gauss's lemma (Riemannian geometry) page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results