File:Newtons proof of Keplers second law.gif

From formulasearchengine
Jump to navigation Jump to search

Newtons_proof_of_Keplers_second_law.gif(390 × 200 pixels, file size: 47 KB, MIME type: image/gif, looped, 38 frames, 43 s)

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Description
English: Isaac Newton's proof of Kepler's second law of planetary motion.

At left, a large yellow disk represents a star, and at right, the smaller blue disk represents a planet.

The blue arrow represents the planet's instantaneous orbital velocity. Assuming no force acting upon it, it will move in a straight line at a fixed rate. After some fixed amount of time, it will have reached a new position. Then, at this position, an instantaneous centripetal force (red arrow) is acted upon the planet towards the star, altering its path as shown with the addition of the blue and red arrows (violet arrow).

The planet is shown traversing this new path, as well as a "shadow" (faint, gray disk) of the planet describing its trajectory during the same amount of time if the attractive force hadn't been acted upon it (that is, if it had remained in its original trajectory).

We have then three different positions for the planet, and an alternate position given the lack of the centripetal force. These four positions describe three triangles, which share the star as one of their vertices.

We then select the first and second triangles. We can see they both share the same length for a base (red double arrow). Tracing parallel lines, we can see they also share the same height (in orange). Since the area of a triangle is given by , we conclude that both triangles have the same area.

A similar process is performed with the second and the third triangle, showing that the area of the triangle defined by the altered trajectory is the same as the area of the unaltered trajectory.

The time interval can be made arbitrarily small, until the instantaneous force can be considered acting continuously. Therefore, the line connecting the planet to the sun will always sweep an equal area, as described by Kepler's second law.
Date
Source Own work
Author Lucas Vieira
Permission
(Reusing this file)
Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

23 July 2012

image/gif

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current19:43, 23 July 2012Thumbnail for version as of 19:43, 23 July 2012390 × 200 (47 KB)wikimediacommons>LucasVBFixing some swapped labels on A2 and A3, added an extra comparison at the end for A1 = A3.

The following page uses this file: