Quasi-isomorphism: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>MystBot
m r2.6.4+) (robot Adding: fr:Quasi-isomorphisme
 
en>SuperJew
 
Line 1: Line 1:
The writer is known as Irwin Wunder but it's not the most masucline title out there. California is exactly where I've usually been living and I love each day residing right here. What I adore doing is to collect badges but I've been using on new things lately. My day job is a meter reader.<br><br>Also visit my homepage - [http://3bbc.com/index.php?do=/profile-548128/info/ 3bbc.com]
In applied [[mathematics]] and the [[calculus of variations]], the '''first variation''' of a [[Functional (mathematics)|functional]] ''J''(''y'') is defined as the linear functional <math> \delta J(y) </math> mapping the function ''h'' to
 
:<math>\delta J(y)(h) = \lim_{\varepsilon\to 0} \frac{J(y + \varepsilon h)-J(y)}{\varepsilon} = \left.\frac{d}{d\varepsilon} J(y + \varepsilon h)\right|_{\varepsilon = 0},</math>
 
where ''y'' and ''h'' are functions, and ''ε'' is a scalar.
 
==Example==
 
Compute the first variation of
 
:<math>J(y)=\int_a^b yy' dx.</math>
 
From the definition above,
 
:<math>
\begin{align}
\delta J(y)(h)&=\left.\frac{d}{d\varepsilon} J(y + \varepsilon h)\right|_{\varepsilon = 0}\\
&= \left.\frac{d}{d\varepsilon} \int_a^b (y + \varepsilon h)(y^\prime + \varepsilon h^\prime) \ dx\right|_{\varepsilon = 0}\\
&= \left.\frac{d}{d\varepsilon} \int_a^b (yy^\prime + y\varepsilon h^\prime + y^\prime\varepsilon h + \varepsilon^2 hh^\prime) \ dx\right|_{\varepsilon = 0}\\
&= \left.\int_a^b \frac{d}{d\varepsilon} (yy^\prime + y\varepsilon h^\prime + y^\prime\varepsilon h + \varepsilon^2 hh^\prime) \ dx\right|_{\varepsilon = 0}\\
&= \left.\int_a^b (yh^\prime + y^\prime h + 2\varepsilon hh^\prime) \ dx\right|_{\varepsilon = 0}\\
&= \int_a^b (yh^\prime + y^\prime h) \ dx
\end{align}
</math>
 
== See also ==
*[[Calculus of variations]]
 
==External links==
*[http://www.exampleproblems.com Exampleproblems.com] has more examples of computing the first variation of functionals.
 
[[Category:Calculus of variations]]
 
{{mathanalysis-stub}}

Latest revision as of 21:51, 18 November 2013

In applied mathematics and the calculus of variations, the first variation of a functional J(y) is defined as the linear functional δJ(y) mapping the function h to

δJ(y)(h)=limε0J(y+εh)J(y)ε=ddεJ(y+εh)|ε=0,

where y and h are functions, and ε is a scalar.

Example

Compute the first variation of

J(y)=abyydx.

From the definition above,

δJ(y)(h)=ddεJ(y+εh)|ε=0=ddεab(y+εh)(y+εh)dx|ε=0=ddεab(yy+yεh+yεh+ε2hh)dx|ε=0=abddε(yy+yεh+yεh+ε2hh)dx|ε=0=ab(yh+yh+2εhh)dx|ε=0=ab(yh+yh)dx

See also

External links

Template:Mathanalysis-stub