Quasi-isomorphism: Difference between revisions
Jump to navigation
Jump to search
en>MystBot m r2.6.4+) (robot Adding: fr:Quasi-isomorphisme |
en>SuperJew m Disambiguated: weak equivalence → weak equivalence (homotopy theory) |
||
Line 1: | Line 1: | ||
In applied [[mathematics]] and the [[calculus of variations]], the '''first variation''' of a [[Functional (mathematics)|functional]] ''J''(''y'') is defined as the linear functional <math> \delta J(y) </math> mapping the function ''h'' to | |||
:<math>\delta J(y)(h) = \lim_{\varepsilon\to 0} \frac{J(y + \varepsilon h)-J(y)}{\varepsilon} = \left.\frac{d}{d\varepsilon} J(y + \varepsilon h)\right|_{\varepsilon = 0},</math> | |||
where ''y'' and ''h'' are functions, and ''ε'' is a scalar. | |||
==Example== | |||
Compute the first variation of | |||
:<math>J(y)=\int_a^b yy' dx.</math> | |||
From the definition above, | |||
:<math> | |||
\begin{align} | |||
\delta J(y)(h)&=\left.\frac{d}{d\varepsilon} J(y + \varepsilon h)\right|_{\varepsilon = 0}\\ | |||
&= \left.\frac{d}{d\varepsilon} \int_a^b (y + \varepsilon h)(y^\prime + \varepsilon h^\prime) \ dx\right|_{\varepsilon = 0}\\ | |||
&= \left.\frac{d}{d\varepsilon} \int_a^b (yy^\prime + y\varepsilon h^\prime + y^\prime\varepsilon h + \varepsilon^2 hh^\prime) \ dx\right|_{\varepsilon = 0}\\ | |||
&= \left.\int_a^b \frac{d}{d\varepsilon} (yy^\prime + y\varepsilon h^\prime + y^\prime\varepsilon h + \varepsilon^2 hh^\prime) \ dx\right|_{\varepsilon = 0}\\ | |||
&= \left.\int_a^b (yh^\prime + y^\prime h + 2\varepsilon hh^\prime) \ dx\right|_{\varepsilon = 0}\\ | |||
&= \int_a^b (yh^\prime + y^\prime h) \ dx | |||
\end{align} | |||
</math> | |||
== See also == | |||
*[[Calculus of variations]] | |||
==External links== | |||
*[http://www.exampleproblems.com Exampleproblems.com] has more examples of computing the first variation of functionals. | |||
[[Category:Calculus of variations]] | |||
{{mathanalysis-stub}} |
Latest revision as of 21:51, 18 November 2013
In applied mathematics and the calculus of variations, the first variation of a functional J(y) is defined as the linear functional mapping the function h to
where y and h are functions, and ε is a scalar.
Example
Compute the first variation of
From the definition above,
See also
External links
- Exampleproblems.com has more examples of computing the first variation of functionals.