|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| {{Modulation techniques}}
| | Oscar is what my spouse loves to contact me and I totally dig that name. North Dakota is our beginning place. Bookkeeping is her working day occupation now. One of the extremely best things in the globe for him is to collect badges but he is having difficulties to find time for it.<br><br>Check out my web page; meal delivery service ([http://GET7.pw/dietmeals23439 relevant web page]) |
| | |
| '''Orthogonal frequency-division multiplexing''' ('''OFDM''') is a method of encoding digital data on multiple carrier frequencies. OFDM has developed into a popular scheme for [[wideband]] [[digital communication]], whether [[wireless]] or over [[copper]] wires, used in applications such as digital television and audio broadcasting, [[Digital subscriber line|DSL]] [[Internet access]], wireless networks, powerline networks, and [[4G]] mobile communications.
| |
| | |
| OFDM is essentially identical to '''coded OFDM''' ('''COFDM''') and '''discrete multi-tone modulation''' ('''DMT'''), and is a [[frequency-division multiplexing]] (FDM) scheme used as a digital multi-carrier [[modulation]] method. The word "coded" comes from the use of [[forward error correction]] (FEC).<ref name=cobas/> A large number of closely spaced [[orthogonality#Communications|orthogonal]] [[subcarrier|sub-carrier signals]] are used to carry [[data]]<ref name=cobas>[http://www.webe.org/papers05/rohde-cofdm.pdf webe.org - 2GHz BAS Relocation Tech-Fair, COFDM Technology Basics]. 2007-03-02</ref><!--page8--> on several [[Crosstalk (electronics)|parallel]] data streams or channels. Each sub-carrier is modulated with a conventional modulation scheme (such as [[quadrature amplitude modulation]] or [[phase-shift keying]]) at a low [[symbol rate]], maintaining total data rates similar to conventional ''single-carrier'' modulation schemes in the same bandwidth.
| |
| | |
| The primary advantage of OFDM over single-carrier schemes is its ability to cope with severe [[channel (communications)|channel]] conditions (for example, [[attenuation distortion|attenuation]] of high frequencies in a long copper wire, narrowband [[Interference (communication)|interference]] and frequency-selective [[fading]] due to [[Multipath propagation|multipath]]) without complex equalization filters. Channel [[equalization]] is simplified because OFDM may be viewed as using many slowly modulated [[narrowband]] signals rather than one rapidly modulated [[wideband]] signal. The low symbol rate makes the use of a [[guard interval]] between symbols affordable, making it possible to eliminate [[intersymbol interference]] (ISI) and utilize echoes and time-spreading (on analogue TV these are visible as [[Ghosting (television)|ghosting]] and blurring, respectively) to achieve a [[diversity gain]], i.e. a [[signal-to-noise ratio]] improvement. This mechanism also facilitates the design of [[single frequency network]]s (SFNs), where several adjacent transmitters send the same signal simultaneously at the same frequency, as the signals from multiple distant transmitters may be combined constructively, rather than interfering as would typically occur in a traditional single-carrier system.
| |
| | |
| ==Example of applications==
| |
| The following list is a summary of existing OFDM based standards and products. For further details, see the [[#Usage|Usage]] section at the end of the article.
| |
| | |
| ===Cable===
| |
| * [[ADSL]] and [[VDSL]] broadband access via [[plain old telephone service|POTS]] [[copper]] wiring,
| |
| * [[DVB-C|DVB-C2]], an enhanced version of the [[DVB-C]] digital cable TV standard,
| |
| * [[Power line communication]] (PLC),
| |
| * [[ITU-T]] [[G.hn]], a standard which provides high-speed local area networking of existing home wiring (power lines, phone lines and coaxial cables),
| |
| * [[TrailBlazer]] [[plain old telephone service|telephone line]] modems,
| |
| * [[Multimedia over Coax Alliance]] (MoCA) home networking.
| |
| | |
| ===Wireless===
| |
| * The [[wireless LAN]] (WLAN) radio interfaces [[IEEE 802.11a]], [[IEEE 802.11g-2003|g]], [[IEEE 802.11n-2009|n]] and [[HIPERLAN/2]].
| |
| * The [[digital radio]] systems [[Eureka 147|DAB/EUREKA 147]], [[DAB+]], [[Digital Radio Mondiale]], [[HD Radio]], [[T-DMB]] and [[ISDB-TSB]].
| |
| * The terrestrial [[digital TV]] systems [[DVB-T]] and [[ISDB-T]].
| |
| * The terrestrial [[mobile TV]] systems [[DVB-H]], [[T-DMB]], [[ISDB-T]] and [[MediaFLO]] forward link.
| |
| * The wireless [[personal area network]] (PAN) [[ultra-wideband]] (UWB) [[IEEE 802.15.3a]] implementation suggested by [[WiMedia Alliance]].
| |
| | |
| The OFDM based [[multiple access]] technology [[Orthogonal frequency-division multiple access|OFDMA]] is also used in several [[4G]] and pre-4G [[cellular network]]s and [[mobile broadband]] standards:
| |
| * The mobility mode of the [[wireless MAN]]/[[broadband wireless access]] (BWA) standard [[IEEE 802.16e]] (or Mobile-[[WiMAX]]).
| |
| * The [[Mobile Broadband Wireless Access|mobile broadband wireless access]] (MBWA) standard [[IEEE 802.20]].
| |
| * the downlink of the [[3GPP]] [[Long Term Evolution]] (LTE) fourth generation mobile broadband standard. The radio interface was formerly named ''High Speed OFDM Packet Access'' (HSOPA), now named [[Evolved UMTS Terrestrial Radio Access]] (E-UTRA).
| |
| | |
| == Key features ==
| |
| The advantages and disadvantages listed below are further discussed in the [[#Characteristics and principles of operation|Characteristics and principles of operation]] section below.
| |
| | |
| === Summary of advantages ===
| |
| * High [[spectral efficiency]] as compared to other double [[sideband]] modulation schemes, spread spectrum, etc.
| |
| * Can easily adapt to severe channel conditions without complex time-domain equalization.
| |
| * Robust against narrow-band co-channel interference.
| |
| * Robust against [[intersymbol interference]] (ISI) and fading caused by multipath propagation.
| |
| * Efficient implementation using [[Fast Fourier Transform]] (FFT).
| |
| * Low sensitivity to time synchronization errors.
| |
| * Tuned sub-channel receiver filters are not required (unlike conventional [[frequency-division multiplexing|FDM]]).
| |
| * Facilitates [[single frequency network]]s (SFNs); i.e., transmitter [[macrodiversity]].
| |
| | |
| === Summary of disadvantages ===
| |
| * Sensitive to [[Doppler effect|Doppler shift]].
| |
| * Sensitive to frequency synchronization problems.
| |
| * High [[Crest factor|peak-to-average-power ratio]] (PAPR), requiring linear transmitter circuitry, which suffers from poor power efficiency.
| |
| * Loss of efficiency caused by [[cyclic prefix]]/[[guard interval]].
| |
| | |
| == Characteristics and principles of operation ==
| |
| | |
| === Orthogonality ===
| |
| Conceptually, OFDM is a specialized FDM, the additional constraint being: all the carrier signals are orthogonal to each other.
| |
| | |
| In OFDM, the sub-carrier frequencies are chosen so that the sub-carriers are [[orthogonality#Communications|orthogonal]] to each other, meaning that [[crosstalk (electronics)|cross-talk]] between the sub-channels is eliminated and inter-carrier guard bands are not required. This greatly simplifies the design of both the [[transmitter]] and the [[receiver (radio)|receiver]]; unlike conventional [[frequency-division multiplexing|FDM]], a separate filter for each sub-channel is not required.
| |
| | |
| The orthogonality requires that the sub-carrier spacing is <math>\scriptstyle\Delta f \,=\, \frac{k}{T_U}</math> [[Hertz]], where ''T''<sub>U</sub> [[second]]s is the useful symbol duration (the receiver side window size), and ''k'' is a positive integer, typically equal to 1. Therefore, with ''N'' sub-carriers, the total passband bandwidth will be ''B'' ≈ ''N''·Δ''f'' (Hz).
| |
| | |
| The orthogonality also allows high [[spectral efficiency]], with a total symbol rate near the [[Nyquist rate]] for the equivalent baseband signal (i.e. near half the Nyquist rate for the double-side band physical passband signal). Almost the whole available frequency band can be utilized. OFDM generally has a nearly 'white' spectrum, giving it benign electromagnetic interference properties with respect to other co-channel users.
| |
| | |
| :A simple example: A useful symbol duration ''T''<sub>U</sub> = 1 ms would require a sub-carrier spacing of <math>\scriptstyle\Delta f \,=\, \frac{1}{1\,\mathrm{ms}} \,=\, 1\,\mathrm{kHz}</math> (or an integer multiple of that) for orthogonality. ''N'' = 1,000 sub-carriers would result in a total passband bandwidth of ''N''Δf = 1 MHz. For this symbol time, the required bandwidth in theory according to Nyquist is N/2''T''<sub>U</sub> = 0.5 MHz (i.e., half of the achieved bandwidth required by our scheme). If a guard interval is applied (see below), Nyquist bandwidth requirement would be even lower. The FFT would result in ''N'' = 1,000 samples per symbol. If no guard interval was applied, this would result in a base band complex valued signal with a sample rate of 1 MHz, which would require a baseband bandwidth of 0.5 MHz according to Nyquist. However, the passband RF signal is produced by multiplying the baseband signal with a carrier waveform (i.e., double-sideband quadrature amplitude-modulation) resulting in a passband bandwidth of 1 MHz. A single-side band (SSB) or vestigial sideband (VSB) modulation scheme would achieve almost half that bandwidth for the same symbol rate (i.e., twice as high spectral efficiency for the same symbol alphabet length). It is however more sensitive to multipath interference.
| |
| | |
| OFDM requires very accurate frequency synchronization between the receiver and the transmitter; with frequency deviation the sub-carriers will no longer be orthogonal, causing ''inter-carrier interference'' (ICI) (i.e., cross-talk between the sub-carriers). Frequency offsets are typically caused by mismatched transmitter and receiver oscillators, or by [[Doppler shift]] due to movement. While Doppler shift alone may be compensated for by the receiver, the situation is worsened when combined with [[multipath interference|multipath]], as reflections will appear at various frequency offsets, which is much harder to correct. This effect typically worsens as speed increases,<ref>Robertson, P.; Kaiser, S. "The effects of Doppler spreads in OFDM(A) mobile radio systems", Vehicular Technology Conference, 1999. VTC 1999 - Fall. IEEE VTS. [http://www.kn-s.dlr.de/People/Kaiser/Papers/VTC99_Robertson_Kaiser.ps Link]</ref> and is an important factor limiting the use of OFDM in high-speed vehicles. In order to mitigate ICI in such scenarios, one can shape each sub-carrier in order to minimize the interference resulting in a non-orthogonal subcarriers overlapping.<ref>{{cite journal |title=A Time-Frequency Well-localized Pulse for Multiple Carrier Transmission | last1=Haas | first1=R. | last2=Belfiore | first2=J.C. |journal= Wireless Personal Communications |year= 1997 |volume= 5 |number= 1 |pages= 1–18 |doi= 10.1023/A:1008859809455 }}.</ref> For example, a low-complexity scheme referred to as WCP-OFDM ({{lang|en|''Weighted Cyclic Prefix Orthogonal Frequency-Division Multiplexing''}}) consists in using short filters at the transmitter output in order to perform a potentially non-rectangular pulse shaping and a near perfect reconstruction using a single-tap per subcarrier equalization.<ref>{{cite journal |title=Performances of Weighted Cyclic Prefix OFDM with Low-Complexity Equalization | last1=Roque | first1=D. | last2=Siclet | first2=C. |journal= IEEE Communications Letters |year= 2013 |volume= 17 |number= 3 |pages= 439–442 |doi= 10.1109/LCOMM.2013.011513.121997 }}.</ref> Other ICI suppression techniques usually increase drastically the receiver complexity.<ref>{{cite journal |title=An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels | last1=Jeon | first1=W.G. | last2=Chang | first2=K.H. | last3=Cho | first3=Y.S. |journal= IEEE Transactions on Communications |year= 1999 |volume= 47 |number= 1 |pages= 27–32 |doi= 10.1109/26.747810 }}.</ref>
| |
| | |
| ===Implementation using the FFT algorithm===
| |
| The orthogonality allows for efficient modulator and demodulator implementation using the [[Fast Fourier transform|FFT]] algorithm on the receiver side, and inverse FFT on the sender side. Although the principles and some of the benefits have been known since the 1960s, OFDM is popular for wideband communications today by way of low-cost [[digital signal processing]] components that can efficiently calculate the FFT.
| |
| | |
| The time to compute the inverse-FFT or FFT transform has to take less than the time for each symbol.<ref name=ce883>[http://ce.sharif.ir/courses/85-86/2/ce883/resources/root/Lectures/About-OFDM.pdf sharif.ir - The suitability of OFDM as a modulation technique for wireless telecommunications, with a CDMA comparison.]<!--page 84-->, October 1997</ref> Which for example for [[DVB-T]] {{nowrap|(FFT 8k)}} means the computation has to be done in {{nowrap|896 µs}} or less.
| |
| | |
| For an {{gaps|8|192}}-point [[Fast Fourier transform|FFT]] this may be approximated to:<ref name=ce883/>{{clarify|reason=Normally complexity is said to be proportional to N*log2(N) per block for FFT; i.e., 8192*13 when N=8192.|date=September 2012}}
| |
| | |
| :<math>\begin{align}
| |
| \mathrm{MIPS}
| |
| &= \frac {\mathrm{computational\ complexity}}{T_\mathrm{symbol}} \times 1.3 \times 10^{-6} \\
| |
| &= \frac{147\;456 \times 2}{896 \times 10^{-6}} \times 1.3 \times 10^{-6} \\
| |
| &= 428
| |
| \end{align}</math><ref name=ce883/><!-- extrapolated from the FFT 2048 example -->
| |
| | |
| * MIPS = [[Instructions per second#Million instructions per second|Million instructions per second]]
| |
| | |
| The computational demand approximately scales linearly with FFT size so a double size FFT needs double the amount of time and vice versa.<!--page 83--><ref name=ce883/><!--someone deduce this directly from n*log(n) wich needs *4 to match ? -->
| |
| As a comparison an [[Pentium III|Intel Pentium III]] CPU at 1.266 GHz is able to calculate a {{nowrap|8 192 point}} FFT in <!--$n=8192; $mflops=925; 5*$n*(log($n)/log(2))/$mflops=575.654054-->{{nowrap|576 µs}} using [[FFTW]].<!--double-precision complex, 1d transforms FFTW3 out-of-place--><ref>[http://www.fftw.org/speed/Pentium3-1.266GHz/ fftw.org - 1.266 GHz Pentium 3], 2006-06-20</ref> [[Pentium M|Intel Pentium M]] at 1.6 GHz does it in {{nowrap|387 µs.}}<ref>[http://www.fftw.org/speed/PentiumM-1.6GHz-gcc/ fftw.org - 1.6 GHz Pentium M (Banias), GNU compilers], 2006-06-20</ref> [[Intel Core#Core Duo|Intel Core Duo]] at 3.0 GHz does it in {{nowrap|96.8 µs}}.<ref>[http://www.fftw.org/speed/CoreDuo-3.0GHz-icc/ fftw.org - 3.0 GHz Intel Core Duo, Intel compilers, 32-bit mode], 2006-10-09</ref>
| |
| | |
| === Guard interval for elimination of intersymbol interference ===
| |
| One key principle of OFDM is that since low symbol rate modulation schemes (i.e., where the symbols are relatively long compared to the [[channel (communications)|channel]] time characteristics) suffer less from [[intersymbol interference]] caused by [[multipath propagation]], it is advantageous to transmit a number of low-rate streams in parallel instead of a single high-rate stream. Since the duration of each symbol is long, it is feasible to insert a [[guard interval]] between the OFDM symbols, thus eliminating the intersymbol interference. | |
| | |
| The guard interval also eliminates the need for a [[pulse-shaping filter]], and it reduces the sensitivity to time synchronization problems.
| |
| | |
| :A simple example: If one sends a million symbols per second using conventional single-carrier modulation over a wireless channel, then the duration of each symbol would be one microsecond or less. This imposes severe constraints on synchronization and necessitates the removal of multipath interference. If the same million symbols per second are spread among one thousand sub-channels, the duration of each symbol can be longer by a factor of a thousand (i.e., one millisecond) for orthogonality with approximately the same bandwidth. Assume that a guard interval of 1/8 of the symbol length is inserted between each symbol. Intersymbol interference can be avoided if the multipath time-spreading (the time between the reception of the first and the last echo) is shorter than the guard interval (i.e., 125 microseconds). This corresponds to a maximum difference of 37.5 kilometers between the lengths of the paths.
| |
| | |
| The [[cyclic prefix]], which is transmitted during the guard interval, consists of the end of the OFDM symbol copied into the guard interval, and the guard interval is transmitted followed by the OFDM symbol. The reason that the guard interval consists of a copy of the end of the OFDM symbol is so that the receiver will integrate over an integer number of sinusoid cycles for each of the multipaths when it performs OFDM demodulation with the FFT. In some standards such as [[Ultrawideband]], in the interest of transmitted power, cyclic prefix is skipped and nothing is sent during the guard interval. The receiver will then have to mimic the cyclic prefix functionality by copying the end part of the OFDM symbol and adding it to the beginning portion.
| |
| | |
| === Simplified equalization ===
| |
| The effects of frequency-selective channel conditions, for example fading caused by multipath propagation, can be considered as constant (flat) over an OFDM sub-channel if the sub-channel is sufficiently narrow-banded (i.e., if the number of sub-channels is sufficiently large). This makes frequency domain [[equalization]] possible at the [[receiver (radio)|receiver]], which is far simpler than the time-domain equalization used in conventional single-carrier modulation. In OFDM, the equalizer only has to multiply each detected sub-carrier (each Fourier coefficient) in each OFDM symbol by a constant complex number, or a rarely changed value.
| |
| | |
| :Our example: The OFDM equalization in the above numerical example would require one complex valued multiplication per subcarrier and symbol (i.e., <math>\scriptstyle N \,=\, 1000</math> complex multiplications per OFDM symbol; i.e., one million multiplications per second, at the receiver). The FFT algorithm requires <math>\scriptstyle N \log_2 N \,=\, 10,000</math> [this is imprecise: over half of these complex multiplications are trivial, i.e. = to 1 and are not implemented in software or HW]. complex-valued multiplications per OFDM symbol (i.e., 10 million multiplications per second), at both the receiver and transmitter side. This should be compared with the corresponding one million symbols/second single-carrier modulation case mentioned in the example, where the equalization of 125 microseconds time-spreading using a [[FIR filter]] would require, in a naive implementation, 125 multiplications per symbol (i.e., 125 million multiplications per second). FFT techniques can be used to reduce the number of multiplications for an [[FIR filter]] based time-domain equalizer to a number comparable with OFDM, at the cost of delay between reception and decoding which also becomes comparable with OFDM.
| |
| | |
| If differential modulation such as [[DPSK]] or [[DQPSK]] is applied to each sub-carrier, equalization can be completely omitted, since these non-coherent schemes are insensitive to slowly changing amplitude and [[phase distortion]].
| |
| | |
| In a sense, improvements in FIR equalization using FFTs or partial FFTs leads mathematically closer to OFDM,{{Citation needed|date=January 2011}} but the OFDM technique is easier to understand and implement, and the sub-channels can be independently adapted in other ways than varying equalization coefficients, such as switching between different [[QAM]] constellation patterns and error-correction schemes to match individual sub-channel noise and interference characteristics.{{Clarify|date=January 2011}}
| |
| | |
| Some of the sub-carriers in some of the OFDM symbols may carry [[pilot signal]]s for measurement of the channel conditions<ref>"Coleri, S. Ergen, M. Puri, A. Bahai, A., Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Transactions on Broadcasting, Sep 2002. "[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1033876 Link]</ref><ref>Hoeher, P. Kaiser, S. Robertson, P. "Two-dimensional pilot-symbol-aided channel estimation by Wienerfiltering". IEEE [[International Conference on Acoustics, Speech, and Signal Processing]], ICASSP-97, 1997. [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=598897 Link]</ref> (i.e., the equalizer gain and phase shift for each sub-carrier). Pilot signals and training symbols ([[Preamble (communication)|preambles]]) may also be used for time synchronization (to avoid intersymbol interference, ISI) and frequency synchronization (to avoid inter-carrier interference, ICI, caused by Doppler shift).
| |
| | |
| OFDM was initially used for wired and stationary wireless communications. However, with an increasing number of applications operating in highly mobile environments, the effect of dispersive fading caused by a combination of multi-path propagation and [[doppler shift]] is more significant. Over the last decade, research has been done on how to equalize OFDM transmission over doubly selective channels.<ref>"Zemen, T.; Mecklenbrauker, C.F., Time-Variant Channel Estimation Using Discrete Prolate Spheroidal Sequences. Signal Processing, IEEE Transactions on, vol.53, no.9, pp. 3597- 3607, Sept. 2005 {{doi|10.1109/TSP.2005.853104}}"
| |
| [http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1495893 Link]</ref><ref>"Zijian Tang; Cannizzaro, R.C.; Leus, G.; Banelli, P., Pilot-Assisted Time-Varying Channel Estimation for OFDM Systems, Signal Processing, IEEE Transactions on, vol.55, no.5, pp.2226-2238, May 2007 {{doi|10.1109/TSP.2007.893198}}"
| |
| [http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4156430&isnumber=4156355 Link]</ref><ref>"Hrycak, T.; Das, S.; Matz, G.; Feichtinger, H. G.; Low Complexity Equalization for Doubly Selective Channels Modeled by a Basis Expansion, Signal Processing, IEEE Transactions on, vol.PP, no.99, pp.1-1, 0 {{doi|10.1109/TSP.2010.2063426}}"
| |
| [http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5540312&isnumber=4359509 Link]</ref>
| |
| | |
| === Channel coding and interleaving ===
| |
| OFDM is invariably used in conjunction with [[channel coding]] ([[forward error correction]]), and almost always uses frequency and/or time [[forward error correction#Interleaving|interleaving]].
| |
| | |
| Frequency (subcarrier) [[forward error correction#Interleaving|interleaving]] increases resistance to frequency-selective channel conditions such as [[fading]]. For example, when a part of the channel bandwidth fades, frequency interleaving ensures that the bit errors that would result from those subcarriers in the faded part of the bandwidth are spread out in the bit-stream rather than being concentrated. Similarly, time interleaving ensures that bits that are originally close together in the bit-stream are transmitted far apart in time, thus mitigating against severe fading as would happen when travelling at high speed.
| |
| | |
| However, time interleaving is of little benefit in slowly fading channels, such as for stationary reception, and frequency interleaving offers little to no benefit for narrowband channels that suffer from flat-fading (where the whole channel bandwidth fades at the same time).
| |
| | |
| The reason why interleaving is used on OFDM is to attempt to spread the errors out in the bit-stream that is presented to the error correction decoder, because when such decoders are presented with a high concentration of errors the decoder is unable to correct all the bit errors, and a burst of uncorrected errors occurs. A similar design of audio data encoding makes compact disc (CD) playback robust.
| |
| | |
| A classical type of error correction coding used with OFDM-based systems is [[convolutional code|convolutional coding]], often [[concatenated error correction codes|concatenated]] with [[Reed–Solomon error correction|Reed-Solomon]] coding. Usually, additional interleaving (on top of the time and frequency interleaving mentioned above) in between the two layers of coding is implemented. The choice for Reed-Solomon coding as the outer error correction code is based on the observation that the Viterbi decoder used for inner convolutional decoding produces short errors bursts when there is a high concentration of errors, and Reed-Solomon codes are inherently well-suited to correcting bursts of errors.
| |
| | |
| Newer systems, however, usually now adopt near-optimal types of error correction codes that use the turbo decoding principle, where the decoder iterates towards the desired solution. Examples of such error correction coding types include [[turbo code]]s and [[LDPC]] codes, which perform close to the [[Shannon limit]] for the Additive White Gaussian Noise ([[Additive white Gaussian noise|AWGN]]) channel. Some systems that have implemented these codes have concatenated them with either Reed-Solomon (for example on the [[MediaFLO]] system) or [[BCH code]]s (on the [[DVB-S2]] system) to improve upon an [[error floor]] inherent to these codes at high [[signal-to-noise ratio]]s.
| |
| | |
| === Adaptive transmission ===
| |
| The resilience to severe channel conditions can be further enhanced if information about the channel is sent over a return-channel. Based on this feedback information, adaptive [[modulation]], channel coding and power allocation may be applied across all sub-carriers, or individually to each sub-carrier. In the latter case, if a particular range of frequencies suffers from interference or attenuation, the carriers within that range can be disabled or made to run slower by applying more robust modulation or [[error coding]] to those sub-carriers.
| |
| | |
| The term ''discrete multitone modulation'' (''DMT'') denotes OFDM based communication systems that adapt the transmission to the channel conditions individually for each sub-carrier, by means of so-called ''bit-loading''. Examples are [[ADSL]] and [[VDSL]].
| |
| | |
| The upstream and downstream speeds can be varied by allocating either more or fewer carriers for each purpose. Some forms of [[rate-adaptive DSL]] use this feature in real time, so that the bitrate is adapted to the co-channel interference and bandwidth is allocated to whichever subscriber needs it most.
| |
| | |
| === OFDM extended with multiple access ===
| |
| OFDM in its primary form is considered as a digital modulation technique, and not a multi-user [[channel access method]], since it is utilized for transferring one bit stream over one communication [[Channel (communications)|channel]] using one sequence of OFDM symbols. However, OFDM can be combined with [[multiple access]] using time, frequency or coding separation of the users.
| |
| | |
| In [[orthogonal frequency-division multiple access]] (OFDMA), [[frequency-division multiple access]] is achieved by assigning different OFDM sub-channels to different users. OFDMA supports differentiated [[quality of service]] by assigning different number of sub-carriers to different users in a similar fashion as in [[CDMA]], and thus complex packet scheduling or [[Media Access Control]] schemes can be avoided. OFDMA is used in:
| |
| * the mobility mode of the [[IEEE 802.16]] Wireless MAN standard, commonly referred to as WiMAX,
| |
| * the [[IEEE 802.20]] mobile Wireless MAN standard, commonly referred to as MBWA,
| |
| * the [[3GPP Long Term Evolution]] (LTE) fourth generation mobile broadband standard downlink. The radio interface was formerly named High Speed OFDM Packet Access (HSOPA), now named Evolved UMTS Terrestrial Radio Access ([[E-UTRA]]).
| |
| * the now defunct [[Qualcomm]]/[[3GPP2]] [[Ultra Mobile Broadband]] (UMB) project, intended as a successor of [[CDMA2000]], but replaced by LTE.
| |
| OFDMA is also a candidate access method for the [[IEEE 802.22]] ''Wireless Regional Area Networks'' (WRAN). The project aims at designing the first [[cognitive radio]] based standard operating in the VHF-low UHF spectrum (TV spectrum).
| |
| | |
| In [[Multi-carrier code division multiple access]] (MC-CDMA), also known as OFDM-CDMA, OFDM is combined with CDMA spread spectrum communication for coding separation of the users. Co-channel interference can be mitigated, meaning that manual [[fixed channel allocation]] (FCA) frequency planning is simplified, or complex [[dynamic channel allocation]] (DCA) schemes are avoided.
| |
| | |
| === Space diversity ===
| |
| In OFDM based wide area broadcasting, receivers can benefit from receiving signals from several spatially dispersed transmitters simultaneously, since transmitters will only destructively interfere with each other on a limited number of sub-carriers, whereas in general they will actually reinforce coverage over a wide area. This is very beneficial in many countries, as it permits the operation of national [[single-frequency network]]s (SFN), where many transmitters send the same signal simultaneously over the same channel frequency. SFNs utilise the available spectrum more effectively than conventional multi-frequency broadcast networks ([[Multi-frequency network|MFN]]), where program content is replicated on different carrier frequencies. SFNs also result in a [[diversity gain]] in receivers situated midway between the transmitters. The coverage area is increased and the outage probability decreased in comparison to an MFN, due to increased received signal strength averaged over all sub-carriers.
| |
| | |
| Although the guard interval only contains redundant data, which means that it reduces the capacity, some OFDM-based systems, such as some of the broadcasting systems, deliberately use a long guard interval in order to allow the transmitters to be spaced farther apart in an SFN, and longer guard intervals allow larger SFN cell-sizes. A rule of thumb for the maximum distance between transmitters in an SFN is equal to the distance a signal travels during the guard interval — for instance, a guard interval of 200 microseconds would allow transmitters to be spaced 60 km apart.
| |
| | |
| A ''single frequency network'' is a form of transmitter [[macrodiversity]]. The concept can be further utilized in ''[[dynamic single-frequency networks]]'' (DSFN), where the SFN grouping is changed from timeslot to timeslot.
| |
| | |
| OFDM may be combined with other forms of [[space diversity]], for example [[Phased array|antenna arrays]] and [[MIMO]] channels. This is done in the IEEE802.11 [[Wireless LAN]] standard.
| |
| | |
| === Linear transmitter power amplifier ===
| |
| An OFDM signal exhibits a high [[Crest factor|peak-to-average power ratio (PAPR)]] because the independent phases of the sub-carriers mean that they will often combine constructively. Handling this high PAPR requires:
| |
| * a high-resolution [[digital-to-analogue converter]] (DAC) in the transmitter
| |
| * a high-resolution [[analogue-to-digital converter]] (ADC) in the receiver
| |
| * a linear [[signal chain]].
| |
| Any non-linearity in the signal chain will cause [[intermodulation distortion]] that
| |
| * raises the noise floor
| |
| * may cause inter-carrier interference
| |
| * generates out-of-band spurious radiation.
| |
| The linearity requirement is demanding, especially for transmitter RF output circuitry where amplifiers are often designed to be non-linear in order to minimise power consumption. In practical OFDM systems a small amount of peak clipping is allowed to limit the PAPR in a judicious trade-off against the above consequences. However, the transmitter output filter which is required to reduce out-of-band spurs to legal levels has the effect of restoring peak levels that were clipped, so clipping is not an effective way to reduce PAPR.
| |
| | |
| Although the spectral efficiency of OFDM is attractive for both terrestrial and space communications, the high PAPR requirements have so far limited OFDM applications to terrestrial systems.
| |
| | |
| The crest factor CF (in dB) for an OFDM system with n uncorrelated sub-carriers is<ref name="Kaehs">
| |
| Bernhard Kaehs.
| |
| [http://cdn.rohde-schwarz.com/dl_downloads/dl_application/application_notes/7ts02/7TS02_2E.pdf "The Crest Factor in DVB-T (OFDM) Transmitter Systems and its Influence on the Dimensioning of Power Components"]
| |
| </ref>
| |
| | |
| CF = 10 log( n ) + CFc ...
| |
| | |
| where CFc is the crest factor (in dB) for each sub-carrier.
| |
| (CFc is 3.01 dB for the sine waves used for BPSK and QPSK modulation).
| |
| | |
| For example, the DVB-T signal in 2K mode is composed of 1705 sub-carriers that are each QPSK-modulated, giving a crest factor of 35.32 dB.<ref name="Kaehs" />
| |
| | |
| Many [[crest factor]] reduction techniques have been developed.
| |
| | |
| The [[dynamic range]] required for an FM receiver is {{nowrap|120 dB}} while DAB only require
| |
| about {{nowrap|90 dB.}}<ref name=dabpr>{{cite book|title=Digital Audio Broadcasting: Principles and Applications of DAB, DAB + and DMB |url=http://books.google.se/books?id=T0KSa6w3qH4C&pg=PA333&lpg=PA333&source=bl |page=333 |year=2009|accessdate=2013-07-04}} (3rd edition 2009)</ref> As a comparison, each extra bit per sample increases the dynamic range with {{nowrap|6 dB.}}
| |
| | |
| == Efficiency comparison between single carrier and multicarrier ==
| |
| The performance of any communication system can be measured in terms of its power efficiency and bandwidth efficiency.
| |
| The power efficiency describes the ability of communication system to preserve bit error rate ([[Bit error rate|BER]]) of the transmitted signal at low power levels.
| |
| [[Bandwidth efficiency]] reflects how efficiently the allocated bandwidth is utilized and is defined as the throughput data rate per Hertz in a given bandwidth.
| |
| If the large number of subcarriers are used, the bandwidth efficiency of multicarrier system such as OFDM with using [[optical fiber channe]]l is defined as <ref>{{cite book | author=William Shieh, Ivan Djordjevic. | title="OFDM for Optical Communications". | location= 525 B Street, Suite 1900, San Diego, California 92101-4495, USA | publisher=Academic Press | year=2010 }}</ref>
| |
| *<math>\eta=2.\frac{R_{s}}{B_{OFDM}}</math>
| |
| Factor 2 is because of two [[polarization states]] in the fiber.
| |
| | |
| where <math>R_{s}</math> is the symbol rate in giga symbol per second (Gsps), and <math>B_{OFDM}</math> is the bandwidth of OFDM signal.
| |
| | |
| There is saving of bandwidth by using Multicarrier modulation with orthogonal frequency division multiplexing . So the bandwidth for multicarrier system is less in comparison with single carrier system and hence bandwidth efficiency of multicarrier system is larger than single carrier system.
| |
| {| class="wikitable"
| |
| ! S.No. !! Transmission Type !! M in M-QAM !! No. of Subcarriers !! Bit rate !! Fiber length !! Power at the receiver(at BER of 10<sup>−9</sup>) !! Bandwidth efficiency
| |
| |-
| |
| | 1. || single carrier || 64 || 1 || {{nowrap|10 Gbit/s}} || {{nowrap|20 km}} || {{nowrap|-37.3 [[dBm]]}} || 6.0000
| |
| |-
| |
| | 2. || multicarrier || 64 || 128 || {{nowrap|10 Gbit/s}} || {{nowrap|20 km}} || {{nowrap|-36.3 dBm}} || 10.6022
| |
| |}
| |
| | |
| There is only 1 dB reduction in receiver power, but we get 76.7% improvement in bandwidth efficiency with using multicarrier transmission technique.
| |
| | |
| == Idealized system model ==
| |
| This section describes a simple idealized OFDM system model suitable for a time-invariant [[AWGN]] channel.
| |
| | |
| === Transmitter ===
| |
| [[File:OFDM transmitter ideal.png|center|754px]]
| |
| An OFDM carrier signal is the sum of a number of orthogonal sub-carriers, with [[baseband]] data on each sub-carrier being independently modulated commonly using some type of [[quadrature amplitude modulation]] (QAM) or [[phase-shift keying]] (PSK). This composite baseband signal is typically used to modulate a main [[radio frequency|RF]] carrier.
| |
| | |
| <math>\scriptstyle s[n]</math> is a serial stream of binary digits. By [[inverse multiplexing]], these are first demultiplexed into <math>\scriptstyle N</math> parallel streams, and each one mapped to a (possibly complex) symbol stream using some modulation constellation ([[QAM]], [[phase-shift keying|PSK]], etc.). Note that the constellations may be different, so some streams may carry a higher bit-rate than others.
| |
| | |
| An inverse [[Fast Fourier transform|FFT]] is computed on each set of symbols, giving a set of complex time-domain samples. These samples are then [[Quadrature phase|quadrature]]-mixed to passband in the standard way. The real and imaginary components are first converted to the analogue domain using [[digital-to-analogue converter]]s (DACs); the analogue signals are then used to modulate [[cosine]] and [[sine]] waves at the [[Carrier wave|carrier]] frequency, <math>\scriptstyle f_c</math>, respectively. These signals are then summed to give the transmission signal, <math>\scriptstyle s(t)</math>.
| |
| | |
| === Receiver ===
| |
| [[File:OFDM receiver ideal.png|center|800px]]
| |
| The receiver picks up the signal <math>\scriptstyle r(t)</math>, which is then quadrature-mixed down to baseband using cosine and sine waves at the carrier frequency. This also creates signals centered on <math>\scriptstyle 2 f_c</math>, so low-pass filters are used to reject these. The baseband signals are then sampled and digitised using [[analog-to-digital converter]]s (ADCs), and a forward [[Fast Fourier transform|FFT]] is used to convert back to the frequency domain.
| |
| | |
| This returns <math>\scriptstyle N</math> parallel streams, each of which is converted to a binary stream using an appropriate symbol [[detector (radio)|detector]]. These streams are then re-combined into a serial stream, <math>\scriptstyle {\hat s}[n]</math>, which is an estimate of the original binary stream at the transmitter.
| |
| | |
| ==Mathematical description==
| |
| If <math>\scriptstyle N</math> sub-carriers are used, and each sub-carrier is modulated using <math>\scriptstyle M</math> alternative symbols, the OFDM symbol alphabet consists of <math>\scriptstyle M^N</math> combined symbols.
| |
| | |
| The [[low-pass equivalent]] OFDM signal is expressed as:
| |
| :<math>
| |
| \ \nu(t)=\sum_{k=0}^{N-1}X_k e^{j2\pi kt/T}, \quad 0\le t<T,
| |
| </math>
| |
| where <math>\scriptstyle\{X_k\}</math> are the data symbols, <math>\scriptstyle N</math> is the number of sub-carriers, and <math>\scriptstyle T</math> is the OFDM symbol time. The sub-carrier spacing of <math>\scriptstyle \frac{1}{T}</math> makes them orthogonal over each symbol period; this property is expressed as:
| |
| :<math>
| |
| \begin{align}
| |
| &\frac{1}{T}\int_0^{T}\left(e^{j2\pi k_1t/T}\right)^*
| |
| \left(e^{j2\pi k_2t/T}\right)dt \\
| |
| = &\frac{1}{T}\int_0^{T}e^{j2\pi (k_2-k_1)t/T}dt = \delta_{k_1k_2}
| |
| \end{align}
| |
| </math>
| |
| where <math>\scriptstyle (\cdot)^*</math> denotes the [[complex conjugate]] operator and <math>\scriptstyle\delta\,</math> is the [[Kronecker delta]].
| |
| | |
| To avoid intersymbol interference in multipath fading channels, a guard interval of length <math>\scriptstyle T_\mathrm{g}</math> is inserted prior to the OFDM block. During this interval, a ''cyclic prefix'' is transmitted such that the signal in the interval <math>\scriptstyle -T_\mathrm{g} \,\le\, t \,<\, 0</math> equals the signal in the interval <math>\scriptstyle (T-T_\mathrm{g}) \,\le\, t \,<\, T</math>. The OFDM signal with cyclic prefix is thus:
| |
| :<math>\ \nu(t)=\sum_{k=0}^{N-1}X_ke^{j2\pi kt/T}, \quad -T_\mathrm{g}\le t < T</math>
| |
| | |
| The low-pass signal above can be either real or complex-valued. Real-valued low-pass equivalent signals are typically transmitted at baseband—wireline applications such as DSL use this approach. For wireless applications, the low-pass signal is typically complex-valued; in which case, the transmitted signal is up-converted to a carrier frequency <math>\scriptstyle f_c</math>. In general, the transmitted signal can be represented as:
| |
| :<math>
| |
| \begin{align}
| |
| s(t) & = \Re\left\{\nu(t) e^{j2\pi f_c t}\right\} \\
| |
| & = \sum_{k=0}^{N-1}|X_k|\cos\left(2\pi [f_c + k/T]t + \arg[X_k]\right)
| |
| \end{align}
| |
| </math>
| |
| | |
| ==Usage==
| |
| OFDM is used in [[Digital Audio Broadcasting]] (DAB), Digital television [[DVB-T]]/[[DVB-T2|T2]] (terrestrial), [[DVB-H]] (handheld), [[DMB-T/H]], [[DVB-C2]] (cable), Wireless LAN [[IEEE 802.11a]], ADSL ([[G.DMT]]/[[ITU G.992.1]]), {{nowrap|Mobile phone}} [[4G]].
| |
| <!--single-carrier: DVB-S, DVB-S2, DVB-C -->
| |
| | |
| ===OFDM system comparison table===
| |
| Key features of some common OFDM based systems are presented in the following table.
| |
| {| class="wikitable"
| |
| |-
| |
| ! Standard name
| |
| ! [[Digital Audio Broadcasting|DAB]] [[Eureka 147]]
| |
| ! [[DVB-T]]
| |
| ! [[DVB-H]]
| |
| ! [[DMB-T/H]]
| |
| ! [[DVB-T2]]
| |
| ! [[IEEE 802.11a]]
| |
| |-
| |
| ! Ratified year
| |
| | 1995
| |
| | 1997
| |
| | 2004
| |
| | 2006
| |
| | 2007
| |
| | 1999
| |
| |-
| |
| ! Frequency range of<br />today's equipment<br />
| |
| | {{nowrap|174–240 MHz}} {{nowrap|1,452–1,492 GHz}}
| |
| | {{nowrap|470–862 MHz}} {{nowrap|174–230 MHz}}
| |
| | {{nowrap|470–862 MHz}}
| |
| | {{nowrap|470–862 MHz}}
| |
| |
| |
| | {{nowrap|4,915–6,100 GHz}}
| |
| |-
| |
| ! Channel spacing, ''B''<br/>[MHz]
| |
| | 1.712
| |
| | 6, 7, 8
| |
| | 5, 6, 7, 8
| |
| | 8
| |
| | 1.7, 5, 6, 7, 8, 10
| |
| | 20
| |
| |-
| |
| ! FFT size (k=1,024)
| |
| | Mode I: 2k<br/>Mode II: 512<br/>Mode III: 256<br/>Mode IV: 1k
| |
| | 2k, 8k
| |
| | 2k, 4k, 8k
| |
| | 1 (single-carrier)<br />4k (multi-carrier)
| |
| | 1k, 2k, 4k, 8k, 16k, 32k
| |
| | 64
| |
| |-
| |
| ! Number of non-silent sub-carriers, ''N''
| |
| | Mode I: 1,536<br/>Mode II: 384<br/>Mode III: 192<br/>Mode IV: 768
| |
| | 2K mode: 1,705<br />8K mode: 6,817
| |
| | 1,705, 3,409, 6,817
| |
| | 1 (single-carrier)<br />3,780 (multi-carrier)
| |
| | 853-27,841 (1K normal to 32K extended carrier mode)
| |
| | 52
| |
| |-
| |
| ! Sub-carrier modulation scheme
| |
| | {{Frac|π|4}}-DQPSK
| |
| | QPSK,<ref name="QPSK">4QAM is equivalent to QPSK</ref> 16QAM or 64QAM
| |
| | QPSK,<ref name="QPSK"/> 16QAM or 64QAM
| |
| | 4QAM,<ref name="QPSK"/> 4QAM-NR,<ref>NR refers to Nordstrom-Robinson code</ref><br />16QAM, 32QAM and 64QAM.
| |
| | QPSK, 16QAM, 64QAM, 256QAM
| |
| | BPSK, QPSK,<ref name="QPSK"/> 16QAM or 64QAM
| |
| |-
| |
| ! Useful symbol length, ''T<sub>U</sub>''<br />(μs)
| |
| | Mode I: 1,000<br/>Mode II: 250<br/>Mode III: 125<br/>Mode IV: 500
| |
| | 2K mode: 224<br />8K mode: 896
| |
| | 224, 448, 896
| |
| | 500 (multi-carrier)
| |
| | 112-3,584 (1K to 32K mode on 8 MHz channel)
| |
| | 3.2
| |
| |-
| |
| ! Additional guard interval, ''T<sub>G</sub>''<br />(fraction of ''T<sub>U</sub>'')
| |
| | 24.6% (all modes)
| |
| | {{Frac|1|4}}, {{Frac|1|8}}, {{Frac|1|16}}, {{Frac|1|32}}
| |
| | {{Frac|1|4}}, {{Frac|1|8}}, {{Frac|1|16}}, {{Frac|1|32}}
| |
| | {{Frac|1|4}}, {{Frac|1|6}}, {{Frac|1|9}}
| |
| | 1/128, 1/32, 1/16, 19/256, 1/8, 19/128, 1/4.<br />
| |
| (For 32k mode maximum 1/8)
| |
| | {{Frac|1|4}}
| |
| |-
| |
| ! Sub-carrier spacing<br /><math>\scriptstyle \Delta f \,=\, \frac{1}{T_U} \,\approx\, \frac{B}{N}</math><br />(Hz)
| |
| | Mode I: 1,000<br/>Mode II: 4,000<br/>Mode III: 8,000<br/>Mode IV: 2,000
| |
| | 2K mode: 4,464<br />8K mode: 1,116
| |
| | 4,464, 2,232, 1,116
| |
| | 8 M (single-carrier)<br />2,000 (multi-carrier)
| |
| | 279-8,929 (32K down to 1K mode)
| |
| | 312.5K
| |
| |-
| |
| ! Net bit rate, ''R''<br />(Mbit/s)
| |
| | 0.576–1.152
| |
| | 4.98–31.67<br />(typically 24.13)
| |
| | 3.7–23.8
| |
| | 4.81–32.49
| |
| | Typically 35.4
| |
| | 6–54
| |
| |-
| |
| ! [[Link spectral efficiency]] ''R''/''B''<br />(bit/s/Hz)
| |
| | 0.34–0.67
| |
| | 0.62–4.0 (Typ 3.0)
| |
| | 0.62–4.0
| |
| | 0.60–4.1
| |
| | 0.87-6.65
| |
| | 0.30–2.7
| |
| |-
| |
| ! Inner [[forward error correction|FEC]]
| |
| | [[Convolutional code|Conv coding]] with<br/>
| |
| Equal error protection code rates<br/>
| |
| {{Frac|1|4}}, {{Frac|3|8}}, {{Frac|4|9}}, {{Frac|1|2}}, {{Frac|4|7}}, {{Frac|2|3}}, {{Frac|3|4}}, {{Frac|4|5}}<br/>
| |
| Unequal error protection with av. code rates of<br/>
| |
| ~0.34, 0.41, 0.50, 0.60, and 0.75
| |
| | [[Convolutional code|Conv. coding]] with code rates
| |
| {{Frac|1|2}}, {{Frac|2|3}}, {{Frac|3|4}}, {{Frac|5|6}}, or {{Frac|7|8}}
| |
| | [[Convolutional code|Conv. coding]] with code rates
| |
| {{Frac|1|2}}, {{Frac|2|3}}, {{Frac|3|4}}, {{Frac|5|6}}, or {{Frac|7|8}}
| |
| | [[Low-density parity-check code|LDPC]] with code rates
| |
| 0.4, 0.6 or 0.8
| |
| | [[LDPC]] 1/2, 3/5, 2/3, 3/4, 4/5, 5/6
| |
| | [[Convolutional code|Conv. coding]] with code rates
| |
| {{Frac|1|2}}, {{Frac|2|3}}, or {{Frac|3|4}}
| |
| |-
| |
| ! Outer [[forward error correction|FEC]] (if any)
| |
| | Optional [[Reed–Solomon error correction|RS]] (120, 110, t = 5)
| |
| | [[Reed–Solomon error correction|RS]] (204, 188, t=8)
| |
| | [[Reed–Solomon error correction|RS]] (204, 188, t=8) + MPE-FEC
| |
| | [[BCH code]] (762, 752)
| |
| | [[BCH code]]
| |
| |
| |
| |-
| |
| ! Maximum travelling speed<br />(km/h)
| |
| | 200–600
| |
| | 53–185<br />depends on transmission frequency
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |-
| |
| ! Time [[forward error correction#Interleaving|interleaving]] depth<br />(ms)
| |
| | 384
| |
| | 0.6–3.5
| |
| | 0.6–3.5
| |
| | 200–500
| |
| | up to 250 (500 with extension frame)
| |
| |
| |
| |-
| |
| ! [[#Adaptive transmission|Adaptive transmission]]<br />(if any)
| |
| | None
| |
| | None
| |
| | None
| |
| |
| |
| | None
| |
| |
| |
| |-
| |
| ! [[Multiple access method]]<br />(if any)
| |
| | None
| |
| | None
| |
| | None
| |
| |
| |
| | None
| |
| |
| |
| |-
| |
| ! Typical [[source coding]]
| |
| | 192 [[kbit/s]]<br />[[MPEG2]] Audio<br />layer 2
| |
| | 2–18 Mbit/s<br />Standard - HDTV<br />H.264 or MPEG2
| |
| | H.264
| |
| | Not defined<br />(Video: MPEG-2, H.264 and/or [[Audio Video Standard|AVS]]<br />Audio: [[MPEG-1 Audio Layer II|MP2]] or [[Dolby AC-3|AC-3]])
| |
| | H.264 or MPEG2<br />(Audio: AAC HE, Dolby Digital AC-3 (A52), MPEG-2 AL 2.)
| |
| |
| |
| |}
| |
| | |
| ===ADSL===
| |
| OFDM is used in [[asymmetric digital subscriber line|ADSL]] connections that follow the [[G.DMT]] ([[ITU G.992.1]]) standard, in which existing copper wires are used to achieve high-speed data connections.
| |
| | |
| Long copper wires suffer from attenuation at high frequencies. The fact that OFDM can cope with this frequency selective attenuation and with narrow-band interference are the main reasons it is frequently used in applications such as ADSL [[modem]]s. However, DSL cannot be used on every copper pair; interference may become significant if more than 25% of phone lines coming into a [[Telephone exchange|central office]] are used for DSL.{{Citation needed|date=May 2008}}
| |
| | |
| For experimental [[amateur radio]] applications, users have even hooked up [[commercial off-the-shelf]] ADSL equipment to radio transceivers which simply shift the bands used to the radio frequencies the user has licensed.{{Citation needed|date=September 2008}}
| |
| | |
| ===Powerline Technology===
| |
| OFDM is used by many [[power line communication|powerline]] devices to extend digital connections through power wiring. [[Adaptive modulation]] is particularly important with such a noisy channel as electrical wiring.
| |
| Some medium speed smart metering [[modem]]s, "Prime" and "G3" use OFDM at modest frequencies (30–100 kHz)with modest numbers of channels (several hundred) in order to overcome the intersymbol interference in the power line environment.<ref>[http://www.lit.lnt.de/papers/isplc_2011_hoch.pdf] Hoch, Martin; Comparison of PLC G3 and Prime, 2011 IEEE Symposium on Powerline Communication and its Applications</ref>
| |
| The [[IEEE 1901]] standards include two incompatible physical layers that both use OFDM.<ref>{{cite journal |title= Recent Developments in the Standardization of Power Line Communications within the IEEE |authors= Stefano Galli et al. |work= IEEE Communications Magazine |date= July 2008 |volume= 46 |number= 7 |pages= 64–71 |doi= 10.1109/MCOM.2008.4557044 }} An overview of P1901 PHY/MAC proposal.</ref>
| |
| The [[ITU-T]] [[G.hn]] standard, which provides high-speed local area networking over existing home wiring (power lines, phone lines and coaxial cables) is based on a PHY layer that specifies OFDM with adaptive modulation and a Low-Density Parity-Check ([[LDPC]]) FEC code.
| |
| | |
| ===Wireless local area networks (LAN) and metropolitan area networks (MAN)===
| |
| OFDM is extensively used in wireless LAN and MAN applications, including [[IEEE 802.11|IEEE 802.11a/g/n]] and [[WiMAX]].
| |
| | |
| IEEE 802.11a/g/n operating in the 2.4 and 5 GHz bands, specifies a per-stream airside data rates ranging from 6 to 54 Mbit/s. If both devices can utilize "HT mode" added with [[802.11n]] then the top 20 MHz per-stream rate is increased to 72.2 Mbit/s with the option of data rates between 13.5 and 150 Mbit/s using a 40 MHz channel. Four different modulation schemes are used: [[BPSK]], [[QPSK]], 16-[[QAM]], and 64-QAM, along with a set of error correcting rates (1/2–5/6). The multitude of choices allows the system to adapt the optimum data rate for the current signal conditions.
| |
| <!-- Removed advert. Replace with a generic 802.16 WiMax description
| |
| [[Clearwire]], a wireless [[Internet Service Provider]] who provides access to metropolitan areas across the United States, utilizes OFDM in both their current 2.5 GHz network and the planned expansion of their WiMax network.
| |
| -->
| |
| | |
| ===Wireless personal area networks (PAN)===
| |
| OFDM is also now being used in the [http://www.wimedia.com WiMedia/Ecma-368 standard] for high-speed wireless [[personal area network]]s in the 3.1–10.6 GHz ultrawideband spectrum (see MultiBand-OFDM).
| |
| | |
| === Terrestrial digital radio and television broadcasting ===
| |
| Much of Europe and Asia has adopted OFDM for terrestrial broadcasting of digital television ([[DVB-T]], [[DVB-H]] and [[T-DMB]]) and radio ([[EUREKA 147]] [[Digital Audio Broadcasting|DAB]], [[Digital Radio Mondiale]], [[HD Radio]] and [[T-DMB]]).
| |
| | |
| ==== DVB-T ====
| |
| By Directive of the European Commission, all television services transmitted to viewers in the European Community must use a transmission system that has been standardized by a recognized European standardization body,<ref>[http://ec.europa.eu/archives/ISPO/infosoc/legreg/docs/dir95-47en.html DIRECTIVE 95/47/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the use of standards for the transmission of television signals<!-- Bot generated title -->]</ref> and such a standard has been developed and codified by the DVB Project, ''Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television''.<ref>ETSI Standard: EN 300 744 V1.5.1 (2004-11).</ref> Customarily referred to as DVB-T, the standard calls for the exclusive use of COFDM for modulation. DVB-T is now widely used in Europe and elsewhere for terrestrial digital TV.
| |
| | |
| ==== SDARS ====
| |
| The ground segments of the [[Digital Audio Radio Service]] (SDARS) systems used by [[XM Satellite Radio]] and [[Sirius Satellite Radio]] are transmitted using COFDM.<ref>http://www.commsdesign.com/article/printableArticle.jhtml?articleID=12805708 Agere gets Sirius about satellite radio design</ref>
| |
| | |
| ==== COFDM vs VSB ====
| |
| {{Unreferenced section|date=March 2009}}
| |
| The question of the relative technical merits of COFDM versus [[8VSB]] for terrestrial [[digital television]] has been a subject of some controversy, especially between European and North American technologists and regulators. The [[United States]] has rejected several proposals to adopt the COFDM based [[DVB-T]] system for its digital television services, and has instead opted for [[8VSB]] ([[vestigial sideband modulation]]) operation.
| |
| | |
| One of the major benefits provided by COFDM is in rendering radio broadcasts relatively immune to [[multipath interference|multipath]] distortion and signal [[fading]] due to atmospheric conditions or passing aircraft. Proponents of COFDM argue it resists multipath far better than 8VSB. Early 8VSB [[Digital television|DTV]] (digital television) receivers often had difficulty receiving a signal. Also, COFDM allows [[single-frequency networks]], which is not possible with 8VSB.
| |
| | |
| However, newer 8VSB receivers are far better at dealing with multipath, hence the difference in performance may diminish with advances in [[Equalization filter|equalizer]] design.{{Citation needed|date=August 2011}} Moreover, 8VSB is nearly a [[single sideband]] transmission scheme, while OFDM can be described as a double sideband modulation scheme. This implies that 8VSB (with 3 bit/symbol) modulation offers similar bit rate and require similar bandwidth as 64QAM OFDM (with 6 bit per symbol and sub-carrier), i.e. similar spectral efficiency in (bit/s)/Hz. However, the small 8VSB alphabet of 8 symbols makes it less prone to noise than the 64QAM alphabet of 64 symbols, resulting in lower [[bit-error rate]] for the same [[carrier-to-noise ratio|carrier-to-noise]] ratio in case of multipath propagation. 8VSB requires less power than 64QAM to transmit a signal the same distance (i.e., the received [[carrier-to-noise ratio|carrier-to-noise]] threshold is lower for the same [[bit error rate]]).
| |
| | |
| ====Digital radio====<!-- This section is linked from [[Digital Audio Broadcasting]] -->
| |
| COFDM is also used for other radio standards, for [[Digital Audio Broadcasting]] (DAB), the standard for digital audio broadcasting at [[VHF]] frequencies, for [[Digital Radio Mondiale]] (DRM), the standard for digital broadcasting at [[shortwave]] and [[medium wave]] frequencies (below 30 MHz) and for [[Digital Radio Mondiale#DRM Plus|DRM+]] a more recently introduced standard for digital audio broadcasting at [[VHF]] frequencies. (30 to 174 MHz)
| |
| | |
| The USA again uses an alternate standard, a proprietary system developed by [[iBiquity]] dubbed ''[[HD Radio]]''. However, it uses COFDM as the underlying broadcast technology to add digital audio to AM (medium wave) and FM broadcasts.
| |
| | |
| Both Digital Radio Mondiale and HD Radio are classified as [[in-band on-channel]] systems, unlike Eureka 147 (DAB: [[Digital Audio Broadcasting]]) which uses separate VHF or [[Ultra high frequency|UHF]] frequency bands instead.
| |
| | |
| ====BST-OFDM used in ISDB====
| |
| The ''band-segmented transmission orthogonal frequency division multiplexing'' (''BST-OFDM'') system proposed for Japan (in the [[ISDB-T]], [[ISDB-TSB]], and [[ISDB-C]] broadcasting systems) improves upon COFDM by exploiting the fact that some OFDM carriers may be modulated differently from others within the same multiplex. Some forms of COFDM already offer this kind of [[hierarchical modulation]], though BST-OFDM is intended to make it more flexible. The 6 MHz television channel may therefore be "segmented", with different segments being modulated differently and used for different services.
| |
| | |
| It is possible, for example, to send an audio service on a segment that includes a segment composed of a number of carriers, a data service on another segment and a television service on yet another segment—all within the same 6 MHz television channel. Furthermore, these may be modulated with different parameters so that, for example, the audio and data services could be optimized for mobile reception, while the television service is optimized for stationary reception in a high-multipath environment.
| |
| | |
| ===Ultra-wideband===
| |
| [[Ultra-wideband]] (UWB) wireless personal area network technology may also utilise OFDM, such as in Multiband OFDM (MB-OFDM). This UWB specification is advocated by the [[WiMedia Alliance]] (formerly by both the Multiband OFDM Alliance [MBOA] and the WiMedia Alliance, but the two have now merged), and is one of the competing UWB radio interfaces.
| |
| | |
| ===FLASH-OFDM===
| |
| ''Fast low-latency access with seamless handoff orthogonal frequency division multiplexing'' (Flash-OFDM), also referred to as F-OFDM, was based on OFDM and also specified higher [[open systems architecture|protocol layers]]. It was developed by Flarion, and purchased by [[Qualcomm]] in January 2006.<ref>{{cite news |title= Qualcomm and Exoteq Sign OFDM/OFDMA License Agreement |date= August 1, 2007 |work= News release |publisher= Qualcomm |url= http://www.qualcomm.com/news/releases/2007/08/01/qualcomm-and-exoteq-sign-ofdmofdma-license-agreement |accessdate= July 23, 2011}}</ref><ref>{{cite news |title= Qualcomm Completes Acquisition Of WiMAX Competitor |date= January 19, 2006|work=Network Computing |url= http://www.networkcomputing.com/wireless/229614067 |accessdate= July 23, 2011}}</ref> Flash-OFDM was marketed as a packet-switched cellular bearer, to compete with [[GSM]] and [[3G]] networks. As an example, 450 MHz frequency bands previously used by [[Nordic Mobile Telephone|NMT-450]] and [[C-Netz|C-Net C450]] (both 1G analogue networks, now mostly decommissioned) in Europe are being licensed to Flash-OFDM operators.{{citation needed |date= July 2011}}
| |
| | |
| In [[Finland]], the license holder Digita began deployment of a nationwide "@450" wireless network in parts of the country since April 2007. It was purchased by Datame in 2011.<ref>{{cite web |title= Briefly in English |work= @450-Network web site |publisher= Datame |url= http://www.datame.fi/index.php?id=30 |accessdate= July 23, 2011 }}</ref> In February 2012 Datame announced they would upgrade the 450 MHz network to competing [[CDMA2000]] technology.<ref>{{Cite journal |title=@450 siirtyy cdma2000-tekniikkaan - jopa puhelut mahdollisia |journal=[[Tietoviikko]] |author=Aleksi Kolehmainen |date=February 8, 2012 |url=http://www.tietoviikko.fi/kaikki_uutiset/450+siirtyy+cdma2000tekniikkaan++jopa+puhelut+mahdollisia/a773169 |language=Finnish}}</ref>
| |
| | |
| [[Slovak Telekom]] in [[Slovakia]] offers Flash-OFDM connections<ref>{{cite web |title= Mapy pokrytia |work= Slovak Telekom web site |url= http://www.telekom.sk/osobne/pomoc-a-podpora/servis-pre-vas/mapa-pokrytia/ |language= Slovak language |accessdate= May 30, 2012 }}</ref> with a maximum downstream speed of 5.3 Mbit/s, and a maximum upstream speed of 1.8 Mbit/s, with a coverage of over 70 percent of Slovak population.{{citation needed |date= July 2011}}
| |
| | |
| T-Mobile Germany uses Flash-OFDM to backhaul Wi-Fi HotSpots on the Deutsche Bahn's ICE high speed trains.{{citation needed |date= July 2011}}
| |
| | |
| American wireless carrier [[Nextel Communications]] field tested wireless broadband network technologies including Flash-OFDM in 2005.<ref>{{cite news |title= Nextel Flash-OFDM: The Best Network You May Never Use |date= March 2, 2005 |work= PC Magazine |url= http://www.pcmag.com/article2/0,2817,1770838,00.asp |accessdate= July 23, 2011 }}</ref> [[Sprint Nextel|Sprint]] purchased the carrier in 2006 and decided to deploy the mobile version of [[WiMAX]], which is based on [[Orthogonal frequency-division multiple access|Scalable Orthogonal Frequency Division Multiple Access]] (SOFDMA) technology.<ref>{{cite news |title= Sprint Nextel Goes To The WiMax |date= August 8, 2006 |author= Sascha Segan |work= PC Magazine |url= http://www.pcmag.com/article2/0,2817,2000732,00.asp |accessdate= July 23, 2011 }}</ref>
| |
| | |
| Citizens Telephone Cooperative launched a mobile broadband service based on Flash-OFDM technology to subscribers in parts of [[Virginia]] in March 2006. The maximum speed available was 1.5 Mbit/s.<ref>{{cite news |title= Citizens Offers First "Truly Mobile" Wireless Internet in Christiansburg and other parts of the New River Valley |work= News release |publisher= Citizens Wireless |date=March 28, 2006 |url= http://www.citizens.coop/aboutus/newsreleases/TrulyMobileWireless.pdf |accessdate= July 23, 2011 }}</ref> The service was discontinued on April 30, 2009.<ref>{{cite web |title= Thank you for supporting Citizens Mobile Broadband |year= 2009 |publisher= Citizens Wireless |url= http://www.citizens.coop/internet/mobilebroadband.shtm |accessdate= July 23, 2011 }}</ref>
| |
| | |
| [[Digiweb|Digiweb Ltd.]] launched a mobile broadband network using Flash-OFDM technology at 872 MHz in July 2007 in Ireland and Digiweb also owns a national 872 MHz license in Norway. Voice handsets are not yet available as of November 2007. The deployment is live in a small area north of Dublin only.{{citation needed |date= July 2011}}
| |
| | |
| Butler Networks operates a Flash-OFDM network in Denmark at 872 MHz.{{citation needed |date= July 2011}}
| |
| | |
| In The Netherlands, KPN-telecom will start a pilot around July 2007.{{citation needed |date= July 2011}}
| |
| | |
| ==History==
| |
| *1957: Kineplex, multi-carrier HF modem (R.R. Mosier & R.G. Clabaugh)
| |
| *1966: Chang, Bell Labs: OFDM paper<ref>Chang, R. W. (1966). Synthesis of band-limited orthogonal signals for multi-channel data transmission, ''Bell System Technical Journal'' volume 45 issue 10, 1775-1796.</ref> and patent<ref>{{Cite patent|US|3488445}}</ref>
| |
| *1971: Weinstein & Ebert proposed use of [[Fast Fourier transform|FFT]] and [[guard interval]]<ref>S.Weinstein and P. Ebert, Data transmission by frequency-division multiplexing using the discrete Fourier transform, ''IEEE Transactions on Communication
| |
| Technology'', vol. 19, no. 5, pp. 628–634, October 1971.</ref>
| |
| *1985: Cimini described use of OFDM for mobile communications
| |
| *1985: [[Telebit]] Trailblazer Modem introduced a {{nowrap|512 carrier}} Packet Ensemble Protocol ({{nowrap|18 432 bit/s}})
| |
| *1987: Alard & Lasalle: COFDM for digital broadcasting
| |
| *1988: In September TH-CSF LER, first experimental Digital TV link in OFDM, Paris area
| |
| *1989: OFDM international patent application PCT/FR 89/00546, filed in the name of THOMSON-CSF, Fouche, de Couasnon, Travert, Monnier and all<ref>http://www.wipo.int/pctdb/en/wo.jsp?WO=1990/04893</ref>
| |
| *October 1990: TH-CSF LER, first OFDM equipment field test, 34 Mbit/s in an 8 MHz channel, experiments in Paris area
| |
| *December 1990: TH-CSF LER, first OFDM test bed comparison with VSB in Princeton USA
| |
| *September 1992: TH-CSF LER, second generation equipment field test, 70 Mbit/s in an 8 MHz channel, twin polarisations. Wuppertal, Germany
| |
| *October 1992: TH-CSF LER, second generation field test and test bed with BBC, near London, UK
| |
| *1993: TH-CSF show in Montreux SW, 4 TV channel and one HDTV channel in a single 8 MHz channel
| |
| *1993: Morris: Experimental 150 Mbit/s OFDM wireless LAN
| |
| *1994: {{Cite patent|US|5282222}}, ''Method and apparatus for multiple access between transceivers in wireless communications using OFDM spread spectrum'' by Michel Fattouche and [[Hatim Zaghloul]]
| |
| *1995: ETSI [[Digital Audio Broadcasting]] standard EUreka: first OFDM based standard
| |
| *1997: ETSI [[DVB-T]] standard
| |
| *1998: Magic WAND project demonstrates OFDM modems for wireless LAN
| |
| *1999: [[IEEE 802.11a]] wireless LAN standard (Wi-Fi)
| |
| *2000: Proprietary fixed wireless access (V-OFDM, [[#FLASH-OFDM|FLASH-OFDM]], etc.)
| |
| *2002: [[IEEE 802.11g]] standard for wireless LAN
| |
| *2004: [[IEEE 802.16]] standard for wireless MAN (WiMAX)
| |
| *2004: ETSI [[DVB-H]] standard
| |
| *2004: Candidate for [[IEEE 802.15.3a]] standard for wireless PAN (MB-OFDM)
| |
| *2004: Candidate for [[IEEE 802.11n]] standard for next generation wireless LAN
| |
| *2005: OFDMA is candidate for the [[3GPP Long Term Evolution]] (LTE) air interface E-UTRA downlink.
| |
| *2007: The first complete LTE air interface implementation was demonstrated, including OFDM-MIMO, SC-FDMA and multi-user MIMO uplink<ref>[http://www2.nortel.com/go/news_detail.jsp?cat_id=-8055&oid=100214455 Nortel 3G World Congress Press Release]</ref><!-- need to update! -->
| |
| | |
| ==See also==
| |
| {{Portal|Technology}}
| |
| * [[Single-carrier frequency-domain-equalization]] (SC-FDE)
| |
| * [[Single-carrier FDMA]] (SC-FDMA)
| |
| * [[ATSC standards]]
| |
| | |
| ==References==
| |
| {{Reflist|30em}}
| |
| M. Bank, B. Hill, Miriam Bank. A wireless mobile communication system without pilot signals Patent PCT/Il N 2006000926, Patent PCT International Application N0 PCT/IL 2006000926. Patent No. 7,986,740, Issue date: 26 July 2011
| |
| | |
| ==External links==
| |
| {{Commons category}}
| |
| *[http://wcsp.eng.usf.edu/OFDM_links.html Numerous useful links and resources for OFDM] - WCSP Group - University of South Florida (USF)
| |
| *[http://www.wimaxforum.org WiMAX Forum, WiMAX, the framework standard for 4G mobile personal broadband]
| |
| *Stott, 1997 [http://www.bbc.co.uk/rd/pubs/papers/paper_15/paper_15.shtml] Technical presentation by J H Stott of the BBC's R&D division, delivered at the 20 International Television Symposium in 1997; this URL accessed 24 January 2006.
| |
| *Page on Orthogonal Frequency Division Multiplexing at http://www.iss.rwth-aachen.de/Projekte/Theo/OFDM/node6.html accessed on 24 September 2007.
| |
| *[http://sites.google.com/site/mdanishnisar/pubs/01_OFDM_Tutorial_Nisar.pdf A tutorial on the significance of Cyclic Prefix (CP) in OFDM Systems].
| |
| *[http://web.archive.org/web/20060525045608/http://www.infosyncworld.com/news/n/5345.html Siemens demos 360 Mbit/s wireless]
| |
| *[http://www.pattools.com/cgi-bin/patent_navigator.pl?patent=5282222 1994 US Patent 5,282,222 for wireless data transmission] - The patent "tree" rooted on this patent has upwards of 20,000 nodes and leaves references.
| |
| *[http://www.ieee.li/pdf/viewgraphs/introduction_orthogonal_frequency_division_multiplex.pdf An Introduction to Orthogonal Frequency Division Multiplex Technology]
| |
| *[http://www.supelec.fr/d2ri/flexibleradio/cours/ofdmtutorial.pdf Short Introduction to OFDM] - Tutorial written by Prof. Debbah, head of the Alcatel-Lucent Chair on flexible radio.
| |
| *[http://www.digitaltvbooks.com/cofdm.pdf Short free tutorial on COFDM] by Mark Massel formerly at STMicroelectronics and in the digital TV industry for many years.
| |
| *[http://www.digitaltvbooks.com/ A popular book on both COFDM and US ATSC] by Mark Massel
| |
| *A research report by Ali Imran(NUCES)
| |
| * M. Bank. System free of channel problems inherent in changing mobile communication systems. Electronics Letters, 43(7), 2007 (401-402)
| |
| *[http://www.etti.unibw-muenchen.de/labalive/experiment/ofdmstepbystep/ OFDM transmission step-by-step – online experiment]
| |
| | |
| {{Audio broadcasting}}
| |
| | |
| {{DEFAULTSORT:Orthogonal Frequency-Division Multiplexing}}
| |
| [[Category:Multiplexing]]
| |
| [[Category:Quantized radio modulation modes]]
| |
| [[Category:Software-defined radio]]
| |
| [[Category:Modulation and demodulation scheme]]
| |