Radiosity (computer graphics): Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
Limitations: remove redundant colons for readability
No edit summary
 
Line 1: Line 1:
{{Infobox Algorithm
Oavsett försåvitt du letar postumt  ultimata webbplats därför att komma igång eller  befinner sig en bevandrad medlem att utföra bingo gällande ,   viktigaste faktorn såsom du behöver handla att lokalisera vilken  skänker dej suverän alldeles avgiftsfri erbjudanden. Dessa tider, flertal webbplatser nuvarande krediter  ut även satsa klöver. Du borde bedöma ännu avsevärt mer, försåvitt du  gällande att kostnadsfri real vinstbeloppet såsom någon bonus av bingorum. Bingo  1 från  mest populär samt njutbar video lockton äger dom  glädje dagligen. Var lirare möjlighet att fånga stora klöver bonusar.<br><br>
|class=[[Sorting algorithm]]
|image=
|data=[[Array data type|Array]]
|time=<math>O(kN)</math>
|space=<math>O(k + N)</math>
|optimal=exactly correct
}}
In [[computer science]], '''radix sort''' is a non-[[Comparison sort|comparative]] [[integer sorting|integer]] [[sorting algorithm]] that sorts data with integer keys by grouping keys by the individual digits which share the same [[Significant figures|significant]] position and valueA [[positional notation]] is required, but because integers can represent strings of characters (e.g., names or dates) and specially formatted floating point numbers, [[radix]] sort is not limited to integersRadix sort dates back as far as 1887 to the work of [[Herman Hollerith]] on [[tabulating machines]].<ref>{{Cite patent|US|395781}} and {{Cite patent|UK|327}}</ref>


Most digital computers internally represent all of their data as electronic representations of binary numbers, so processing the digits of integer representations by groups of binary digit representations is most convenient. Two classifications of radix sorts are [[least significant digit]] (LSD) radix sorts and [[most significant digit]] (MSD) radix sorts. LSD radix sorts process the integer representations starting from the least digit and move towards the most significant digit. MSD radix sorts work the other way around.
befinna en som är kända stäv sin fantastiska casino game eller befinner sig en online casino som erbjuder högkvalitativa lösningar Ifall råkar existera dotterbolag någon välrenommerade webbplatsäger du någon avsevärt möjlighet att erhålla ytterligare mission avsevärt mer pengar stäv dej personligen. nHurså borde du bli Jackpotjoy affiliate? Saken där etta faktorn ni kräver generellt förfrågan dej personligen ifall ett affiliateprogram är underben ni kommer att ringa programmet. etta beståndsdelen från någon casino 2014 affiliate idé att ställa in vilken foto såsom kasinot inneha.<br><br>Melodi undertecknad förtydliga. För att attrahera meeting nya casinobonus testa donera , mer välbehag större förmåner. ligger kasinon samt inom en firma befinner sig aggressiva. landbaserade kasinon indikerar agera stäv stora deg mycket gratis boende, .<br><br>att innehava sagt att det finns några enkla faktorer  borde vara bildad  oavsett  underrättelse och lek levererar webb-webbplatsen vara hederligt, är det minsann bundenhet gällande vad du söker .<br><br>Affiliates skicka någon hel fraktion kunder mot pokerrum så inneha någon fullkomlig andel . duktig rekommendation när ni väljer en online pokerrum att notera     poker affiliate. Försåvitt ni uppträder inkassera inom besvär din valda poker yta det evig duktig att hava någon kungen din part, en såsom kommer att knalla inom bräschen stäv   poker individerna. kan bestå utmärkt att innehava din vrå försåvitt saker blir besvärlig.<br><br>det avsevärt  att sitta omkring skulle reell pulpet ackurat där miljön är svår förväntan bli avhängig individer Framföra. Såsom tillsammans alla online samtal, finns det likaså att församlingen nya individer från allihopa mer än världen delar en enhetlig nyfikenhet. Internetpoker  felfri att ejakulera tillrätta spel samt leden av online grannskapet. Det dock mest minsann faktiskt värt en prov! Tillsammans många tillgängliga webbplatser, poker  kommer alltid att bestå klass att hitta webbplatsen juste förut dom, oavsett om det en hardcore pokersajt som arbetar inom massiva turneringar massiva priser eller huruvida det är det roliga älskande fria pokerspel pro såsom älskar skada ej älskar att filosofera villig risker med att delta i det förut pengarna.<br><br>Uppsjö från har räknat ut det är blackjack fiffel är spartanskt avlastning från ett gottgörelse Att killen ni ner kungen gatan nya casinobonus utför $30  fånga bit  att spela kort online-Ja, han sannolikt driver ett kur. samtliga, försåvitt det kan befinna automatiskinte? nDessa robotar finns, och dom .<br><br>Det finns bokstavligt hundratals casinospel  kan spelas online. kan också leka gällande progressiva jackpott slots erbjuder enorma cashpriser, mycket på mer ännu en miljon kg. Blackjack  brett itu versioner som omfattar Europeiska Blackjack Mutlihand spanska samt Blackjack Atlantic Metropolis Blackjack Gold. Roulette bland amerikanska, franska Europeiska roulettetillhandahåller olika erfarenheter. Den när helst förändra världen slots all-time favoriter såsom Tomb Raider samt Thunderstruck, därutöver de nya casino bonusspel  Immortal Romance.<br><br>Ibland webbplatser bidra 100% tjugofem stäv det omkring $1000. Kommer att tro på det,     fattiga. Det det samt möjligt för att maximera din chans stäv sign up bonus. Tänk gällande själv lycklig, som villig länga casino 2014s villiga att bidra avta nya något slags boost. Det befinner sig samt såsom deras motivation att locka jätte- mer människor inom att agera. ,  ni  USA, befinner sig det allra ifall du  ett on-line kasino som produceras specifikt stäv avta . variabel som du tvungen överväga befinner sig cirka itu casino 2014 måste du indicera.<br><br>vill vinna samt slå kasinona kungen sin originell , emedan alltsammans du behöver handla är att visas kungen deras . kasino 2014 kommer att tillverka ett uppsättning bruten dem    följer dom strängt kan du besegra.<br><br>Medans somliga andra kasinon kan allokera  en  fullkomligt avgiftsfri marker  deras ingen insättningsbonus, skada sedan upprepa dessa marker kommer fram med  hållbarhetstid som kommer att befinna  mot två timmar  det att  registrerar .<br><br>En enastående kungen streck casino manuell befinner sig verkligen betydelsefullt pro [http://Imgur.com/hot?q=f%C3%B6rsta+g%C3%A5ngen första gången] villig rad casino publiken. Dom nya casino spelarna också kan gripa manualen förut dessa guider att känna till fraser kommer enbart att begå dem mogna. Nästa  lyssnar på ordet bluffa inom pokerbord inte lite förbund namnge någon spelare såsom försöker att framställa andra spelarna klocka spelet worthlessly.<br><br>If you have any queries about the place and how to use Nya online casinon 2014 ([http://newsupdatedospo.blogspot.nl/2011/11/misa-kudus-hari-raya-semua-orang-kudus.html Full stykke skrive]), you can call us at the page.
 
The integer representations that are processed by sorting algorithms are often called "keys", which can exist all by themselves or be associated with other data.
 
LSD radix sorts typically use the following sorting order: short keys come before longer keys, and keys of the same length are sorted lexicographically. This coincides with the normal order of integer representations, such as the sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
 
MSD radix sorts use lexicographic order, which is suitable for sorting strings, such as words, or fixed-length integer representations. A sequence such as "b, c, d, e, f, g, h, i, j, ba" would be lexicographically sorted as "b, ba, c, d, e, f, g, h, i, j". If lexicographic ordering is used to sort variable-length integer representations, then the representations of the numbers from 1 to 10 would be output as 1, 10, 2, 3, 4, 5, 6, 7, 8, 9, as if the shorter keys were left-justified and padded on the right with blank characters to make the shorter keys as long as the longest key for the purpose of determining sorted order.
 
==Efficiency==
 
Radix sort efficiency is O(''d''·''n'') for n keys which have ''d'' or fewer digits. Sometimes ''d'' is presented as a constant, which would make radix sort better (for sufficiently large ''n'') than the best comparison-based sorting algorithms, which are all O(''n''·log(''n'')). However, in general ''d'' cannot be considered a constant. In particular, under the common (but sometimes implicit) assumption that all keys are distinct, then ''d'' must be at least of the order of log(''n''), however other sorting methods become O(log (n) * log (n) * n) under similar constraints as they also need to step through an ever increasing number of symbols to do the comparisons.
 
==Least significant digit radix sorts==
 
A [[least significant digit]] (LSD) radix sort is a fast [[Stable sort|stable]] [[sorting algorithm]] which can be used to sort keys in integer representation order. Keys may be a [[string (computer science)|string]] of characters, or numerical digits in a given 'radix'. The processing of the keys begins at the [[least significant digit]] (i.e., the rightmost digit), and proceeds to the [[most significant digit]] (i.e., the leftmost digit)The sequence in which digits are processed by a [[least significant digit|LSD]] radix sort is the opposite of the sequence in which digits are processed by a [[most significant digit]] (MSD) radix sort.
 
An [[least significant digit|LSD]] radix sort operates in [[big O notation|O]](''nk'') time, where ''n'' is the number of keys, and ''k'' is the average key length.  This kind of performance for variable-length keys can be achieved by grouping all of the keys that have the same length together and separately performing an LSD radix sort on each group of keys for each length, from shortest to longest, in order to avoid processing the whole list of keys on every sorting pass.
 
A radix sorting algorithm was originally used to sort [[punched card]]s in several passes.  A computer algorithm was invented for radix sort in 1954 at [[Massachusetts Institute of Technology|MIT]] by [[Harold H. Seward]]. In many large applications needing speed, the computer radix sort is an improvement on (slower) comparison sorts.
 
LSD radix sorts have resurfaced as an alternative to high performance [[comparison sort|comparison-based sorting algorithms]] (like [[heapsort]] and [[mergesort]]) that require O(''n'' · log ''n'') comparisons, where ''n'' is the number of items to be sorted. [[Comparison sort]]s can do no better than O(''n'' · log ''n'') execution time but offer the flexibility of being able to sort with respect to more complicated orderings than a lexicographic one; however, this ability is of little importance in many practical applications.
 
===Definition===
Each key is first figuratively dropped into one level of buckets corresponding to the value of the rightmost digit.  Each bucket preserves the original order of the keys as the keys are dropped into the bucket. There is a one-to-one correspondence between the number of buckets and the number of values that can be represented by the rightmost digit. Then, the process repeats with the next neighbouring more significant digit until there are no more digits to processIn other words:
#Take the least significant digit (or group of bits, both being examples of [[radix|radices]]) of each key.
#Group the keys based on that digit, but otherwise keep the original order of keys. (This is what makes the LSD radix sort a [[stable sort]]).
#Repeat the grouping process with each more significant digit.
 
The sort in step&nbsp;2 is usually done using [[bucket sort]] or [[counting sort]], which are efficient in this case since there are usually only a small number of digits.
<!-- Entire paragraph implementation-dependent according to Base -->
 
===An example===
 
Original, unsorted list:
 
:170, 45, 75, 90, 802, 2,24, 66
 
Sorting by least significant digit (1s place) gives:
 
:17<u>0</u>, 9<u>0</u>, 80<u>2</u>, <u>2</u>, 2<u>4</u>, 4<u>5</u>, 7<u>5</u>, 6<u>6</u>
 
:<small>Notice that we keep 802 before 2, because 802 occurred before 2 in the original list, and similarly for pairs 170 & 90 and 45 & 75.</small>
 
Sorting by next digit (10s place) gives:
 
:8<u>0</u>2, 2, <u>2</u>4, <u>4</u>5, <u>6</u>6, 1<u>7</u>0, <u>7</u>5, <u>9</u>0
 
:<small>Notice that 802 again comes before 2 as 802 comes before 2 in the previous list.</small>
 
Sorting by most significant digit (100s place) gives:
 
:2, 24, 45, 66, 75, 90, <u>1</u>70, <u>8</u>02
 
It is important to realize that each of the above steps requires just a single pass over the data, since each item can be placed in its correct bucket without having to be compared with other items.
 
Some LSD radix sort implementations allocate space for buckets by first counting the number of keys that belong in each bucket before moving keys into those buckets.  The number of times that each digit occurs is stored in an [[Array data type|array]]Consider the previous list of keys viewed in a different way:
 
:170, 045, 075, 090, 002, 024, 802, 066
 
The first counting pass starts on the least significant digit of each key, producing an array of bucket sizes:
 
:2 (bucket size for digits of 0: 17<u>0</u>, 09<u>0</u>)
:2 (bucket size for digits of 2: 00<u>2</u>, 80<u>2</u>)
:1 (bucket size for digits of 4: 02<u>4</u>)
:2 (bucket size for digits of 5: 04<u>5</u>, 07<u>5</u>)
:1 (bucket size for digits of 6: 06<u>6</u>)
 
A second counting pass on the next more significant digit of each key will produce an array of bucket sizes:
 
:2 (bucket size for digits of 0: 0<u>0</u>2, 8<u>0</u>2)
:1 (bucket size for digits of 2: 0<u>2</u>4)
:1 (bucket size for digits of 4: 0<u>4</u>5)
:1 (bucket size for digits of 6: 0<u>6</u>6)
:2 (bucket size for digits of 7: 1<u>7</u>0, 0<u>7</u>5)
:1 (bucket size for digits of 9: 0<u>9</u>0)
 
A third and final counting pass on the most significant digit of each key will produce an array of bucket sizes:
 
:6 (bucket size for digits of 0: <u>0</u>02, <u>0</u>24, <u>0</u>45, <u>0</u>66, <u>0</u>75, <u>0</u>90)
:1 (bucket size for digits of 1: <u>1</u>70)
:1 (bucket size for digits of 8: <u>8</u>02)
 
At least one LSD radix sort implementation now counts the number of times that each digit occurs in each column for all columns in a single counting pass. (See the [[Radix sort#External links|external links]] section.) Other LSD radix sort implementations allocate space for buckets dynamically as the space is needed.
 
===Iterative version using queues===
A simple version of an LSD radix sort can be achieved using [[Queue (data structure)|queues]] as buckets. The following process is repeated for a number of times equal to the length of the longest key:
#The integers are enqueued into an array of ten separate queues based on their digits from right to left. Computers often represent integers internally as fixed-length binary digitsHere, we will do something analogous with fixed-length decimal digits. So, using the numbers from the previous example, the queues for the 1st pass would be:
#:0: 17<u>0</u>, 09<u>0</u>
#:1: none
#:2: 00<u>2</u>, 80<u>2</u>
#:3: none
#:4: 02<u>4</u>
#:5: 04<u>5</u>, 07<u>5</u>
#:6: 06<u>6</u>
#:7–9: none
#The queues are dequeued back into an array of integers, in increasing order. Using the same numbers, the array will look like this after the first pass:
#:170, 090, 002, 802, 024, 045, 075, 066
#For the second pass:
#:Queues:
#::0: 0<u>0</u>2, 8<u>0</u>2
#::1: none
#::2: 0<u>2</u>4
#::3: none
#::4: 0<u>4</u>5
#::5: none
#::6: 0<u>6</u>6
#::7: 1<u>7</u>0, 0<u>7</u>5
#::8: none
#::9: 0<u>9</u>0
#:Array:
#::002, 802, 024, 045, 066, 170, 075, 090<br />(note that at this point only 802 and 170 are out of order)
#For the third pass:
#:Queues:
#::0: <u>0</u>02, <u>0</u>24, <u>0</u>45, <u>0</u>66, <u>0</u>75, <u>0</u>90
#::1: <u>1</u>70
#::2–7: none
#::8: <u>8</u>02
#::9: none
#:Array:
#::002, 024, 045, 066, 075, 090, 170, 802 (sorted)
While this may not be the most efficient radix sort algorithm, it is relatively simple, and still quite efficient.
During all tests on 100M or fewer random 64-bit integers, qsort algorithm behaves faster.
 
===Example in C===
<source lang=c>
#include<stdio.h>
#define MAX 20
#define SHOWPASS
#define BASE 10
void print(int *a, int n)
{
  int i;
  for (i = 0; i < n; i++)
    printf("%d\t", a[i]);
}
   
void radixsort(int *a, int n)
{
  int i, b[MAX], m = a[0], exp = 1;
  for (i = 1; i < n; i++)
  {
     if (a[i] > m)
      m = a[i];
  }
   
  while (m / exp > 0)
  {
    int bucket[BASE] ={ 0 };
    for (i = 0; i < n; i++)
      bucket[(a[i] / exp) % BASE]++;
    for (i = 1; i < BASE; i++)
      bucket[i] += bucket[i - 1];
    for (i = n - 1; i >= 0; i--)
      b[--bucket[(a[i] / exp) % BASE]] = a[i];
    for (i = 0; i < n; i++)
      a[i] = b[i];
    exp *= BASE;
   
    #ifdef SHOWPASS
      printf("\nPASS  : ");
      print(a, n);
    #endif
  }
}
   
int main()
{
  int arr[MAX];
  int i, n;
   printf("Enter total elements (n <= %d) : ", MAX);
  scanf("%d", &n);
  n = n < MAX ? n : MAX;
   
  printf("Enter %d Elements : ", n);
  for (i = 0; i < n; i++)
    scanf("%d", &arr[i]);
  printf("\nARRAY  : ");
  print(&arr[0], n);
  radixsort(&arr[0], n);
  printf("\nSORTED : ");
  print(&arr[0], n);
  printf("\n");
  return 0;
}
</source>
 
===Example in Python===
This example written in the Python programming language will perform the radix sort for any radix (base) of 2 or greater. Simplicity of exposition is chosen over clever programming, and so the ''log'' function is used instead of bit shifting techniques.
<source lang=python>
#python2.6 <
from math import log
 
def getDigit(num, base, digit_num):
    # pulls the selected digit
    return (num // base ** digit_num) % base  
   
def makeBlanks(size):
    # create a list of empty lists to hold the split by digit
    return [[] for _ in xrange(size)]  
   
def split(a_list, base, digit_num):
    buckets = makeBlanks(base)
    for num in a_list:
        # append the number to the list selected by the digit
        buckets[getDigit(num, base, digit_num)].append(num)  
    return buckets
# concatenate the lists back in order for the next step
def merge(a_list):
    new_list = []
    for sublist in a_list:
      new_list.extend(sublist)
    return new_list
def maxAbs(a_list):
    # largest abs value element of a list
    return max(abs(num) for num in a_list) 
def radixSort(a_list, base):
    # there are as many passes as there are digits in the longest number
    passes = int(round(log(maxAbs(a_list), base)) + 1)
    new_list = a_list[:]
    for digit_num in range(passes):
        new_list = merge(split(new_list, base, digit_num))
    return new_list
</source>
 
==Most significant digit radix sorts==
A [[most significant digit]] (MSD) radix sort can be used to sort keys in [[lexicographic order]]. Unlike a least significant digit (LSD) radix sort, a most significant digit radix sort [[Stable sort|does not necessarily preserve the original order of duplicate keys]]. An MSD radix sort starts processing the keys from the [[most significant digit]], leftmost digit, to the [[least significant digit]], rightmost digitThis sequence is opposite that of [[least significant digit]] (LSD) radix sorts. An MSD radix sort stops rearranging the position of a key when the processing reaches a unique prefix of the key. Some MSD radix sorts use one level of buckets in which to group the keysSee the [[counting sort]] and [[pigeonhole sort]] articles. Other MSD radix sorts use multiple levels of buckets, which form a [[trie]] or a path in a trie. A [[Bucket sort#Postman's sort|postman's sort / postal sort]] is a kind of MSD radix sort.
 
===Recursion===
A [[recursion|recursively]] subdividing MSD radix sort algorithm works as follows:
#Take the most significant digit of each key.
#Sort the list of elements based on that digit, grouping elements with the same digit into one [[bucket (computing)|bucket]].
#Recursively sort each bucket, starting with the next digit to the right.
#[[Concatenate]] the buckets together in order.
 
====Implementation====
A two-pass method can be used to first find out how big each bucket needs to be and then place each key (or pointer to the key) into the appropriate bucket. A single-pass system can also be used, where each bucket is dynamically allocated and resized as needed, but this runs the risk of serious memory fragmentation, discontiguous allocations of memory, which may degrade performance. This memory fragmentation could be avoided if a fixed allocation of buckets is used for all possible values of a digit, but, for an 8-bit digit, this would require 256 (2<sup>8</sup>) buckets, even if not all of the buckets were used. So, this approach might use up all available memory quickly and go into paging space, where data is stored and accessed on a hard drive or some other secondary memory device instead of main memory, which would radically degrade performance. A fixed allocation approach would only make sense if each digit was very small, such as a single bit.
 
===Recursive forward radix sort example===
Sort the list:
<br>170, 045, 075, 090, 002, 024, 802, 066
#Sorting by most significant digit (100s place) gives:<br> Zero hundreds bucket: <u>0</u>45, <u>0</u>75, <u>0</u>90, <u>0</u>02, <u>0</u>24, <u>0</u>66 <br> One hundreds bucket: <u>1</u>70 <br> Eight hundreds bucket: <u>8</u>02
#Sorting by next digit (10s place) is only needed for those numbers in the zero hundreds bucket (no other buckets contain more than one item):<br> Zero tens bucket: 0<u>0</u>2 <br> Twenties bucket: 0<u>2</u>4 <br> Forties bucket: 0<u>4</u>5 <br> Sixties bucket: 0<u>6</u>6 <br> Seventies bucket: 0<u>7</u>5 <br> Nineties bucket: 0<u>9</u>0
Sorting by least significant digit (1s place) is not needed, as there is no tens bucket with more than one number. Therefore, the now sorted zero hundreds bucket is concatenated, joined in sequence, with the one hundreds bucket and eight hundreds bucket to give:<br>002, 024, 045, 066, 075, 090, 170, 802
 
This example used [[base (exponentiation)|base]] ten digits for the sake of readability, but of course binary digits or perhaps [[byte]]s might make more sense for a binary computer to process.
 
===In-place MSD radix sort implementations===
Binary MSD radix sort, also called binary quicksort, can be implemented in-place by splitting the input array into two bins - the 0s bin and the 1's bin. The 0s bin is grown from the beginning of the array, whereas the 1's bin is grown from the end of the array. The 0s bin boundary is placed before the first array element. The 1's bin boundary is placed after the last array element. The most significant bit of the first array element is examined. If this bit is a 1, then the first element is swapped with the element in front of the 1's bin boundary (the last element of the array), and the 1's bin is grown by one element by decrementing the 1's boundary array index. If this bit is a 0, then the first element remains at its current location, and the 0s bin is grown by one element. The next array element examined is the one in front of the 0s bin boundary (i.e. the first element that is not in the 0s bin or the 1's bin). This process continues until the 0s bin and the 1's bin reach each other. The 0s bin and the 1's bin are then sorted recursively based on the next bit of each array element.  Recursive processing continues until the least significant bit has been used for sorting.<ref>R. Sedgewick, "Algorithms in C++", third edition, 1998, p. 424-427</ref><ref>[http://www.drdobbs.com/architecture-and-design/220300654 V. J. Duvanenko, "In-Place Hybrid Binary-Radix Sort", Dr. Dobb's Journal, 1 October 2009]</ref>  Handling signed integers requires treating the most significant bit with the opposite sense, followed by unsigned treatment of the rest of the bits.
 
In-place MSD binary-radix sort can be extended to larger radix and retain in-place capability[[Counting sort]] is used to determine the size of each bin and their starting indexSwapping is used to place the current element into its bin, followed by expanding the bin boundary. As the array elements are scanned the bins are skipped over and only elements between bins are processed, until the entire array has been processed and all elements end up in their respective bins. The number of bins is the same as the radix used - e.g. 16 bins for 16-RadixEach pass is based on a single digit (e.g. 4-bits per digit in the case of 16-Radix), starting from the [[most significant digit]]. Each bin is then processed recursively using the next digit, until all digits have been used for sorting.<ref>[http://www.drdobbs.com/architecture-and-design/221600153 V. J. Duvanenko, "In-Place Hybrid N-bit-Radix Sort", Dr. Dobb's Journal, November 2009]</ref><ref>[http://www.drdobbs.com/high-performance-computing/229000734 V. J. Duvanenko, "Parallel In-Place Radix Sort Simplified", Dr. Dobb's Journal, January 2011]</ref>
 
Neither in-place binary-radix sort nor n-bit-radix sort, discussed in paragraphs above, are [[Sorting algorithm|stable algorithms]].
 
===Stable MSD radix sort implementations===
MSD Radix Sort can be implemented as a stable algorithm, but requires the use of a memory buffer of the same size as the input array. This extra memory allows the input buffer to be scanned from the first array element to last, and move the array elements to the destination bins in the same order. Thus, equal elements will be placed in the memory buffer in the same order they were in the input array.  The MSD-based algorithm uses the extra memory buffer as the output on the first level of recursion, but swaps the input and output on the next level of recursion, to avoid the overhead of copying the output result back to the input buffer.  Each of the bins are recursively processed, as is done for the in-place MSD Radix Sort.  After the sort by the last digit has been completed, the output buffer is checked to see if it is the original input array, and if it's not, then a single copy is performedIf the digit size is chosen such that the key size divided by the digit size is an even number, the copy at the end is avoided.<ref>[http://www.drdobbs.com/tools/222200161 V. J. Duvanenko, "Stable Hybrid N-bit-Radix Sort", Dr. Dobb's Journal, January 2010]</ref>
 
===Hybrid approaches===
Radix sort, such as two pass method where [[counting sort]] is used during the first pass of each level of recursion, has a large constant overhead. Thus, when the bins get small, other sorting algorithms should be used, such as [[insertion sort]]. A good implementation of [[Insertion sort]] is fast for small arrays, stable, in-place, and can significantly speed up Radix Sort.
 
===Application to parallel computing===
Note that this recursive sorting algorithm has particular application to [[parallel computing]], as each of the bins can be sorted independentlyIn this case, each bin is passed to the next available processor. A single processor would be used at the start (the most significant digit). By the second or third digit, all available processors would likely be engaged. Ideally, as each subdivision is fully sorted, fewer and fewer processors would be utilized. In the worst case, all of the keys will be identical or nearly identical to each other, with the result that there will be little to no advantage to using parallel computing to sort the keys.
 
In the top level of recursion, opportunity for parallelism is in the [[Counting sort]] portion of the algorithm.  Counting is highly parallel, amenable to the parallel_reduce pattern, and splits the work well across multiple cores until reaching memory bandwidth limit.  This portion of the algorithm has data-independent parallelism. Processing each bin in subsequent recursion levels is data-dependent, however. For example, if all keys were of the same value, then there would be only a single bin with any elements in it, and no parallelism would be available. For random inputs all bins would be near equally populated and a large amount of parallelism opportunity would be available.<ref>[http://www.drdobbs.com/high-performance-computing/226600004 V. J. Duvanenko, "Parallel In-Place N-bit-Radix Sort", Dr. Dobb's Journal, August 2010]</ref>
 
Note that there are faster sorting algorithms available, for example optimal complexity O(log(''n'')) are those of the Three Hungarians and Richard Cole<ref>A. Gibbons and [[Wojciech Rytter|W. Rytter]], "Efficient Parallel Algorithms". Cambridge University Press, 1988.</ref><ref>H. Casanova et al, "Parallel Algorithms". Chapman & Hall, 2008.</ref> and [[Batcher]]'s bitonic merge sort has an algorithmic complexity of O(log<sup>2</sup>(''n'')), all of which have a lower algorithmic time complexity to radix sort on a CREW-[[Parallel Random Access Machine|PRAM]]. The fastest known [[Parallel Random Access Machine|PRAM]] sorts were described in 1991 by David Powers with a parallelized quicksort that can operate in O(log(n)) time on a CRCW-[[Parallel Random Access Machine|PRAM]] with ''n'' processors by performing partitioning implicitly, as well as a radixsort that operates using the same trick in O(''k''), where ''k'' is the maximum keylength.<ref>David M. W. Powers, [http://citeseer.ist.psu.edu/327487.html Parallelized Quicksort and Radixsort with Optimal Speedup], ''Proceedings of International Conference on Parallel Computing Technologies''. [[Novosibirsk]]. 1991.</ref> However, neither the [[Parallel Random Access Machine|PRAM]] architecture or a single sequential processor can actually be built in a way that will scale without the number of constant [[fanout]] gate delays per cycle increasing as O(log(''n'')), so that in effect a pipelined version of Batcher's bitonic mergesort and the O(log(''n'')) [[Parallel Random Access Machine|PRAM]] sorts are all O(log<sup>2</sup>(''n'')) in terms of clock cycles, with Powers acknowledging that Batcher's would have lower constant in terms of gate delays than his Parallel [[quicksort]] and radix sort, or Cole's [[merge sort]], for a keylength-independent [[sorting network]] of O(nlog<sup>2</sup>(''n'')).<ref>David M. W. Powers, [http://david.wardpowers.info/Research/AI/papers/199501-ACAW-PUPC.pdf Parallel Unification: Practical Complexity], Australasian Computer Architecture Workshop, Flinders University, January 1995</ref>
 
===Incremental trie-based radix sort===
Another way to proceed with an MSD radix sort is to use more memory to create a [[trie]] to represent the keys and then traverse the trie to visit each key in order.  A [[depth-first search|depth-first traversal]] of a trie starting from the [[root node]] will visit each key in orderA depth-first traversal of a trie, or any other kind of [[Directed acyclic graph|acyclic]] tree structure, is equivalent to traversing a maze via the [[Maze solving algorithm#Wall follower|right-hand rule]].
 
A trie essentially represents a [[set (mathematics)|set]] of strings or numbers, and a radix sort which uses a trie structure is not necessarily stable, which means that the original order of duplicate keys is not necessarily preserved, because a set does not contain duplicate elementsAdditional information will have to be associated with each key to indicate the population count or original order of any duplicate keys in a trie-based radix sort if keeping track of that information is important for a particular application. It may even be desirable to discard any duplicate strings as the trie creation proceeds if the goal is to find only unique strings in sorted order. Some people sort a list of strings first and then make a separate pass through the sorted list to discard duplicate strings, which can be slower than using a trie to simultaneously sort and discard duplicate strings in one pass.
 
One of the advantages of maintaining the trie structure is that the trie makes it possible to determine quickly if a particular key is a member of the set of keys in a time that is proportional to the length of the key, ''k'', in O(''k'') time, that is ''independent'' of the total number of keys.  Determining set membership in a plain list, as opposed to determining set membership in a trie, requires [[binary search]], O(''k&thinsp;log(n)'') time; [[linear search]], O(''kn'') time; or some other method whose execution time is in some way <u>dependent</u> on the total number, ''n'', of all of the keys in the worst case.  It is sometimes possible to determine set membership in a plain list in O(''k'') time, in a time that is independent of the total number of keys, such as when the list is known to be in an [[arithmetic sequence]] or some other computable sequence.
 
Maintaining the trie structure also makes it possible to insert new keys into the set incrementally or delete keys from the set incrementally while maintaining sorted order in O(''k'') time, in a time that is independent of the total number of keys.  In contrast, other radix sorting algorithms must, in the worst case, re-sort the entire list of keys each time that a new key is added or deleted from an existing list, requiring O(''kn'') time.
 
====Snow White analogy====
[[File:7dwarves.svg|center]]
If the nodes were rooms connected by hallways, then here is how Snow White might proceed to visit all of the dwarfs if the place were dark, keeping her right hand on a wall at all times:
# She travels down hall B to find Bashful.
# She continues moving forward with her right hand on the wall, which takes her around the room and back up hall B.
# She moves down halls D, O, and C to find Doc.
# Continuing to follow the wall with her right hand, she goes back up hall C, then down hall P, where she finds Dopey.
# She continues back up halls P, O, D, and then goes down hall G to find Grumpy.
# She goes back up hall G, with her right hand still on the wall, and goes down hall H to the room where Happy is.
# She travels back up hall H and turns right down halls S and L, where she finds Sleepy.
# She goes back up hall L, down hall N, where she finally finds Sneezy.
# She travels back up halls N and S to her starting point and knows that she is done.
 
These series of steps serve to illustrate the path taken in the trie by Snow White via a [[depth-first search|depth-first traversal]] to visit the dwarfs by the ascending order of their names, Bashful, Doc, Dopey, Grumpy, Happy, Sleepy, and Sneezy.  The algorithm for performing some operation on the data associated with each node of a tree first, such as printing the data, and then moving deeper into the tree is called a [[pre-order traversal]], which is a kind of [[depth-first search|depth-first traversal]].  A pre-order traversal is used to process the contents of a trie in ascending order.  If Snow White wanted to visit the dwarfs by the descending order of their names, then she could walk backwards while following the wall with her right hand, or, alternatively, walk forward while following the wall with her left hand. The algorithm for moving deeper into a tree first until no further descent to unvisited nodes is possible and then performing some operation on the data associated with each node is called [[post-order traversal]], which is another kind of depth-first traversal.  A [[post-order traversal]] is used to process the contents of a trie in descending order.
 
The [[root node]] of the [[trie]] in the diagram essentially represents a null string, an empty string, which can be useful for keeping track of the number of blank lines in a list of words.  The null string can be associated with a circularly [[linked list]] with the null string initially as its only member, with the forward and backward pointers both initially pointing to the null string.  The circularly linked list can then be expanded as each new key is inserted into the [[trie]].  The circularly linked list is represented in the following diagram as thick, grey, horizontally linked lines:
 
[[File:7dwarvesThreaded.svg|center]]
If a new key, other than the null string, is inserted into a [[leaf node]] of the [[trie]], then the computer can go to the last preceding node where there was a key or a bifurcation to perform a [[depth-first search]] to find the lexicographic successor or predecessor of the inserted key for the purpose of splicing the new key into the circularly [[linked list]].  The last preceding node where there was a key or a bifurcation, a fork in the path, is a [[parent node]] in the type of trie shown here, where only unique string prefixes are represented as paths in the trie.  If there is already a key associated with the parent node that would have been visited during a movement ''away'' from the root during a right-hand, forward-moving, depth-first traversal, then that immediately ends the depth-first search, as that key is the predecessor of the inserted key.  For example, if Bashful is inserted into the trie, then the predecessor is the null string in the parent node, which is the [[root node]] in this case.  In other words, if the key that is being inserted is on the leftmost branch of the parent node, then any string contained in the parent node is the lexicographic predecessor of the key that is being inserted, else the lexicographic predecessor of the key that is being inserted exists down the parent node's branch that is immediately to the left of the branch where the new key is being inserted.  For example, if Grumpy were the last key inserted into the trie, then the computer would have a choice of trying to find either the predecessor, Dopey, or the successor, Happy, with a [[depth-first search]] starting from the parent node of Grumpy.  With no additional information to indicate which path is longer, the computer might traverse the longer path, D, O, P.  If Dopey were the last key inserted into the trie, then the depth-first search starting from the parent node of Dopey would soon find the predecessor, "Doc", because that would be the only choice.
 
If a new key is inserted into an [[internal node]], then a depth-first search can be started from the [[internal node]] to find the lexicographic successor.  For example, if the literal string "DO" were inserted in the node at the end of the path D, O, then a depth-first search could be started from that internal node to find the successor, "DOC", for the purpose of splicing the new string into the circularly [[linked list]].
 
Forming the circularly linked list requires more memory but allows the keys to be visited more directly in either ascending or descending order via a linear traversal of the [[linked list]] rather than a [[depth-first search|depth-first traversal]] of the entire trie.  This concept of a circularly linked trie structure is similar to the concept of a [[threaded binary tree]].  This structure will be called a circularly threaded trie.
 
[[File:Trie002.svg|center]]
 
When a [[trie]] is used to sort numbers, the number representations must all be the same length unless you are willing to perform a [[breadth-first search|breadth-first traversal]].  When the number representations will be visited via [[depth-first search|depth-first traversal]], as in the above diagram, the number representations will always be on the [[leaf node]]s of the [[trie]].  Note how similar in concept this particular example of a trie is to the [[radix sort#Recursive forward radix sort example|recursive forward radix sort example]] which involves the use of buckets instead of a trie.  Performing a radix sort with the buckets is like creating a trie and then discarding the non-leaf nodes.
 
==See also==
* [[IBM 80 series Card Sorters]]
* [[Spaghetti sort]]
 
==References==
{{reflist}}
 
==External links==<!-- This section is linked from Radix sort -->
{{wikibooks|Algorithm implementation|Sorting/Radix_sort|Radix sort}}
*[http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Radix/ Demonstration and comparison] of Radix sort with [[Bubble sort]], [[Merge sort]] and [[Quicksort]] implemented in [[JavaScript]]
*[http://www.codercorner.com/RadixSortRevisited.htm Article] about Radix sorting [[IEEE floating-point standard|IEEE floating-point]] numbers with implementation.
*:[http://www.stereopsis.com/radix.html Faster Floating Point Sorting and Multiple Histogramming] with implementation in C++
*Pointers to [http://web-cat.cs.vt.edu/AlgovizWiki/RadixSort radix sort visualizations]
*[http://bitbucket.org/ais/usort/wiki/Home USort library] contains tuned implementations of radix sort for most numerical C types (C99)
 
* [[Donald Knuth]]. ''The Art of Computer Programming'', Volume 3: ''Sorting and Searching'', Third Edition. Addison-Wesley, 1997. ISBN 0-201-89685-0. Section 5.2.5: Sorting by Distribution, pp.&nbsp;168–179.
* [[Thomas H. Cormen]], [[Charles E. Leiserson]], [[Ronald L. Rivest]], and [[Clifford Stein]]. ''[[Introduction to Algorithms]]'', Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 8.3: Radix sort, pp.&nbsp;170–173.
* [http://web.archive.org/web/20010714213118/www.chinet.com/~edlee/bradsort.c BRADSORT v1.50 source code]
* [http://goanna.cs.rmit.edu.au/~jz/fulltext/acsc03sz.pdf Efficient Trie-Based Sorting of Large Sets of Strings], by Ranjan Sinha and  Justin Zobel.  This paper describes a method of creating tries of buckets which figuratively burst into sub-tries when the buckets hold more than a predetermined capacity of strings, hence the name, "Burstsort".
* [http://opendatastructures.org/versions/edition-0.1e/ods-java/11_2_Counting_Sort_Radix_So.html Open Data Structures - Java Edition - Section 11.2 - Counting Sort and Radix Sort]
* [http://opendatastructures.org/ods-cpp/11_2_Counting_Sort_Radix_So.html Open Data Structures - C++ Edition - Section 11.2 - Counting Sort and Radix Sort]
 
{{Use dmy dates|date=January 2012}}
{{sorting}}
 
{{DEFAULTSORT:Radix Sort}}
[[Category:Sorting algorithms]]
[[Category:Stable sorts]]
 
[[no:Sorteringsalgoritme#Radix-sortering]]

Latest revision as of 12:41, 30 November 2014

Oavsett försåvitt du letar postumt ultimata webbplats därför att komma igång eller befinner sig en bevandrad medlem att utföra bingo gällande , viktigaste faktorn såsom du behöver handla att lokalisera vilken skänker dej suverän alldeles avgiftsfri erbjudanden. Dessa tider, flertal webbplatser nuvarande krediter ut även satsa klöver. Du borde bedöma ännu avsevärt mer, försåvitt du gällande att kostnadsfri real vinstbeloppet såsom någon bonus av bingorum. Bingo 1 från mest populär samt njutbar video lockton äger dom glädje dagligen. Var lirare möjlighet att fånga stora klöver bonusar.

befinna en som är kända stäv sin fantastiska casino game eller befinner sig en online casino som erbjuder högkvalitativa lösningar Ifall råkar existera dotterbolag någon välrenommerade webbplats, äger du någon avsevärt möjlighet att erhålla ytterligare mission avsevärt mer pengar stäv dej personligen. nHurså borde du bli Jackpotjoy affiliate? Saken där etta faktorn ni kräver generellt förfrågan dej personligen ifall ett affiliateprogram är underben ni kommer att ringa programmet. etta beståndsdelen från någon casino 2014 affiliate idé att ställa in vilken foto såsom kasinot inneha.

Melodi undertecknad förtydliga. För att attrahera meeting nya casinobonus testa donera , mer välbehag större förmåner. ligger kasinon samt inom en firma befinner sig aggressiva. landbaserade kasinon indikerar agera stäv stora deg mycket gratis boende, .

att innehava sagt att det finns några enkla faktorer borde vara bildad oavsett underrättelse och lek levererar webb-webbplatsen vara hederligt, är det minsann bundenhet gällande vad du söker .

Affiliates skicka någon hel fraktion kunder mot pokerrum så inneha någon fullkomlig andel . duktig rekommendation när ni väljer en online pokerrum att notera poker affiliate. Försåvitt ni uppträder inkassera inom besvär din valda poker yta det evig duktig att hava någon kungen din part, en såsom kommer att knalla inom bräschen stäv poker individerna. kan bestå utmärkt att innehava din vrå försåvitt saker blir besvärlig.

det avsevärt att sitta omkring skulle reell pulpet ackurat där miljön är svår förväntan bli avhängig individer Framföra. Såsom tillsammans alla online samtal, finns det likaså att församlingen nya individer från allihopa mer än världen delar en enhetlig nyfikenhet. Internetpoker felfri att ejakulera tillrätta spel samt leden av online grannskapet. Det dock mest minsann faktiskt värt en prov! Tillsammans många tillgängliga webbplatser, poker kommer alltid att bestå klass att hitta webbplatsen juste förut dom, oavsett om det en hardcore pokersajt som arbetar inom massiva turneringar massiva priser eller huruvida det är det roliga älskande fria pokerspel pro såsom älskar skada ej älskar att filosofera villig risker med att delta i det förut pengarna.

Uppsjö från har räknat ut det är blackjack fiffel är spartanskt avlastning från ett gottgörelse Att killen ni ner kungen gatan nya casinobonus utför $30 fånga bit att spela kort online-Ja, han sannolikt driver ett kur. samtliga, försåvitt det kan befinna automatisk, inte? nDessa robotar finns, och dom .

Det finns bokstavligt hundratals casinospel kan spelas online. kan också leka gällande progressiva jackpott slots erbjuder enorma cashpriser, mycket på mer ännu en miljon kg. Blackjack brett itu versioner som omfattar Europeiska Blackjack Mutlihand spanska samt Blackjack Atlantic Metropolis Blackjack Gold. Roulette bland amerikanska, franska Europeiska roulette, tillhandahåller olika erfarenheter. Den när helst förändra världen slots all-time favoriter såsom Tomb Raider samt Thunderstruck, därutöver de nya casino bonusspel Immortal Romance.

Ibland webbplatser bidra 100% tjugofem stäv det omkring $1000. Kommer att tro på det, fattiga. Det det samt möjligt för att maximera din chans stäv sign up bonus. Tänk gällande själv lycklig, som villig länga casino 2014s villiga att bidra avta nya något slags boost. Det befinner sig samt såsom deras motivation att locka jätte- mer människor inom att agera. , ni USA, befinner sig det allra ifall du ett on-line kasino som produceras specifikt stäv avta . variabel som du tvungen överväga befinner sig cirka itu casino 2014 måste du indicera.

vill vinna samt slå kasinona kungen sin originell , emedan alltsammans du behöver handla är att visas kungen deras . kasino 2014 kommer att tillverka ett uppsättning bruten dem följer dom strängt kan du besegra.

Medans somliga andra kasinon kan allokera en fullkomligt avgiftsfri marker deras ingen insättningsbonus, skada sedan upprepa dessa marker kommer fram med hållbarhetstid som kommer att befinna mot två timmar det att registrerar .

En enastående kungen streck casino manuell befinner sig verkligen betydelsefullt pro första gången villig rad casino publiken. Dom nya casino spelarna också kan gripa manualen förut dessa guider att känna till fraser kommer enbart att begå dem mogna. Nästa lyssnar på ordet bluffa inom pokerbord inte lite förbund namnge någon spelare såsom försöker att framställa andra spelarna klocka spelet worthlessly.

If you have any queries about the place and how to use Nya online casinon 2014 (Full stykke skrive), you can call us at the page.