Transfer function: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
en>Pierre5018
See also: link sfg
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{other uses}}
Even if your initial inquiry is only one search engine - orlando seo Google. Another good tactic for business owners to protect themselves from dubious SEO service providers must introduce, employ and apply such analytical means into the services they offer see below.<br><br>my web site :: [http://www.hotfrog.com/Companies/Orlando-SEO-Gaba-Marketing seo company in orlando]
{{pp-semi-indef}}
{{pp-move-indef}}
[[File:SH-60B helicopter flies over Sendai.jpg|thumb|upright=1.4|[[2011 Tōhoku earthquake and tsunami]], An aerial view of damage in the [[Sendai]] region with black smoke coming from the Nippon Oil Sendai oil refinery]]
 
A '''tsunami''' (plural: tsunamis or tsunami; from {{lang-ja|津波}}, lit. "harbour wave";<ref>
  {{cite web|url=http://nthmp-history.pmel.noaa.gov/terms.html
  |title=Tsunami Terminology
  |publisher=[[NOAA]]|accessdate=2010-07-15}}</ref>
English pronunciation: {{IPAc-en|s|uː|ˈ|n|ɑː|m|i}} {{respell|soo|NAH|mee}} or {{IPAc-en|t|s|uː|ˈ|n|ɑː|m|i}} {{respell|tsoo|NAH|mee}}<ref>
  {{cite book
  |title=Longman pronunciation dictionary
  |first=John C. |last= Wells
  |publisher=Longman |location=Harlow, England
  |year=1990 |isbn=0-582-05383-8 |page=736
  }} Entry: "tsunami"</ref>)
is a series of water waves caused by the displacement of a large volume of a body of water, generally an ocean or a [[tsunamis in lakes|large lake]].  [[Earthquake]]s, [[volcanic eruption]]s and other [[underwater explosion]]s (including detonations of underwater [[nuclear device]]s), landslides, [[Ice calving|glacier calvings]], [[impact event|meteorite impacts]] and other disturbances above or below water all have the potential to generate a tsunami.<ref>{{cite web|title=When icebergs capsize, tsunamis may ensue|url=http://blogs.nature.com/barbaraferreira/2011/04/17/when-icebergs-capsize|author=Barbara Ferreira|date=April 17, 2011|publisher=''[[Nature (journal)|Nature]]''|accessdate=2011-04-27}}</ref>
 
Tsunami waves do not resemble normal [[sea wave]]s, because their wavelength is far longer. Rather than appearing as a breaking wave, a tsunami may instead initially resemble a rapidly rising [[tide]], and for this reason they are often referred to as ''tidal waves''.  Tsunamis generally consist of a series of waves with [[Period (physics)|period]]s ranging from minutes to hours, arriving in a so-called "wave train".<ref name="Fradin 2008">
  {{cite book|last=Fradin|first=Judith Bloom and Dennis Brindell
  |title=Witness to Disaster: Tsunamis
  |publisher=[[National Geographic Society]]
  |location=Washington, D.C.|year=2008
  |series=Witness to Disaster|pages=42, 43
  |url=http://shop.nationalgeographic.com/ngs/product/books/kids-books-and-atlases/animals-and-nature/witness-to-disaster%3A-tsunamis}}
</ref>  Wave heights of tens of metres can be generated by large events.  Although the impact of tsunamis is limited to coastal areas, their destructive power can be enormous and they can affect entire ocean basins; the [[2004 Indian Ocean earthquake and tsunami|2004 Indian Ocean tsunami]] was among the deadliest natural disasters in human history with over 230,000 people killed in 14 countries bordering the [[Indian Ocean]].
 
The [[Ancient Greece|Greek]] historian [[Thucydides]] suggested in his late 5th century BC, ''[[History of the Peloponnesian War]]'', that tsunamis were related to [[submarine earthquake]]s,<ref name="Thucydides 3.89.1-4"/><ref name="Smid, T. C. 103f."/> but the understanding of a tsunami's nature remained slim until the 20th century and much remains unknown.  Major areas of current research include trying to determine why some large earthquakes do not generate tsunamis while other smaller ones do; trying to accurately forecast the passage of tsunamis across the oceans; and also to forecast how tsunami waves would interact with specific shorelines.
 
[[File:2004-tsunami.jpg|thumb|upright=1.4|Taken at [[Ao Nang]], [[Krabi Province]], [[Thailand]], during the [[2004 Indian Ocean earthquake and tsunami]] in [[Thailand]]]]
 
==Etymology==
[[File:Ie Beuna Narit Aceh.JPG|thumb|Tsunami warning bilingual sign in Ulee Lheue, [[Banda Aceh]] in [[Acehnese language|Acehnese]] and [[Indonesian language|Indonesian]]]]
 
The term '''''tsunami''''' comes from the Japanese 津波, composed of the two [[kanji]] [[wikt:津|津]] (''tsu'') meaning "[[harbour]]" and [[wikt:波|波]] (''nami''), meaning "[[Ocean surface wave|wave]]". (For the plural, one can either follow ordinary English practice and add an ''s'', or use an invariable plural as in the Japanese.<ref>[a. Jap. tsunami, tunami, f. tsu harbour + nami waves.—''Oxford English Dictionary'']</ref>)
 
Tsunami are sometimes referred to as '''tidal waves''', which are unusually high sea waves that are triggered especially by earthquakes.<ref>http://www.merriam-webster.com/dictionary/tidal%20wave</ref> In recent years, this term has fallen out of favor, especially in the scientific community, because tsunami actually have nothing to do with [[tide]]s. The once-popular term derives from their most common appearance, which is that of an extraordinarily high [[tidal bore]]. Tsunami and tides both produce waves of water that move inland, but in the case of tsunami the inland movement of water is much greater and lasts for a longer period, giving the impression of an incredibly high tide. Although the meanings of "tidal" include "resembling"<ref>"Tidal", The American Heritage Stedman's Medical Dictionary. [[Houghton Mifflin Harcourt|Houghton Mifflin Company]]. 11 November 2008.[http://dictionary.reference.com/browse/tidal Dictionary.reference.com]</ref> or "having the form or character of"<ref>-al. (n.d.). Dictionary.com Unabridged (v 1.1). Retrieved November 11, 2008, [http://dictionary.reference.com/browse/-al Dictionary.reference.com]</ref> the tides, and the term ''tsunami'' is no more accurate because tsunami are not limited to harbours, use of the term ''tidal wave'' is discouraged by [[geologist]]s and [[oceanographer]]s.
 
There are only a few other languages that have an equivalent native word. In [[Acehnese language]], the words are ''ië beuna''<ref>[http://www.seis.nagoya-u.ac.jp/kimata/ref/ICTW08_paper_CPM12JP.pdf Proposing The Community-Based Tsunami Warning System]</ref> or ''alôn buluëk''<ref>[http://books.google.co.id/books?id=efBrY41Hm5QC&pg=PP7&lpg=PP7&dq=alon+buluek+ie+beuna+tsunami&source=bl&ots=1Hj_pswzTy&sig=V7PmAnPptfO7BNMWBAC5aWMGKGI&hl=id&sa=X&ei=etrET-DgDMbPrQeRxcm6CQ&ved=0CCsQ6AEwAA#v=onepage&q=alon%20buluek%20ie%20beuna%20tsunami&f=false Novel Alon Buluek]</ref> (depending on the dialect). In [[Tamil language]], it is ''aazhi peralai''. On [[Simeulue]] island, off the western coast of [[Sumatra]] in [[Indonesia]], in [[Devayan language]] the word is ''smong'', while in [[Sigulai language]] it is ''emong''.<ref>[http://www.jtic.org/phocadownload/archived_old_files/pdf/SMGChapter3.pdf Tsunami 1907: Early Interpretation and its Development]</ref> In [[Aceh Singkil Regency|Singkil]] (in Aceh province) and surrounding, the people name tsunami with word ''gloro''.<ref>[http://m.tribunnews.com/2010/04/19/13-pulau-di-aceh-singkil-hilang 13 Pulau di Aceh Singkil Hilang]</ref>
 
==History==
{{see also|List of historic tsunamis}}
 
[[File:1755 Lisbon earthquake.jpg|left|thumb|[[1755 Lisbon earthquake|Lisbon earthquake and tsunami]] in 1755]]
[[File:Russians meeting Japanese in Akkeshi 1779.jpg|thumb|The Russians of [[Pavel Lebedev-Lastochkin]] in [[Japan]], with their ships tossed inland by a tsunami, meeting some Japanese in 1779]]
 
[[426 BC Maliakos Gulf tsunami|As early as 426 BC]] the [[Ancient Greece|Greek]] historian [[Thucydides]] inquired in his book ''[[History of the Peloponnesian War]]'' about the causes of tsunami, and was the first to argue that ocean earthquakes must be the cause.<ref name="Thucydides 3.89.1-4">[[Thucydides]]: [http://www.perseus.tufts.edu/cgi-bin/ptext?lookup=Thuc.+3.89.1 “A History of the Peloponnesian War”, 3.89.1–4]</ref><ref name="Smid, T. C. 103f.">{{cite book|last=Smid|first=T. C.|title='Tsunamis' in Greek Literature|edition=2nd|volume=17|date=April 1970|pages=100–104|work=Greece & Rome|issue=1}}</ref>
 
<blockquote>"The cause, in my opinion, of this phenomenon must be sought in the earthquake. At the point where its shock has been the most violent the sea is driven back, and suddenly recoiling with redoubled force, causes the inundation. Without an earthquake I do not see how such an accident could happen."<ref name="Thucydides 3.89.5">[[Thucydides]]: [http://www.perseus.tufts.edu/cgi-bin/ptext?lookup=Thuc.+3.89.1 “A History of the Peloponnesian War”, 3.89.5]</ref></blockquote>
 
The [[Ancient Rome|Roman]] historian [[Ammianus Marcellinus]] (''Res Gestae'' 26.10.15-19) described the typical sequence of a tsunami, including an incipient earthquake, the sudden retreat of the sea and a following gigantic wave, after the [[365 Crete earthquake|365 AD tsunami]] devastated [[Alexandria]].<ref name="Kelly, Gavin (2004)">{{cite journal|doi=10.2307/4135013|last=Kelly|first=Gavin|year=2004|title=Ammianus and the Great Tsunami|journal=The Journal of Roman Studies|volume=94|pages=141–167|issue=141|jstor=4135013}}</ref><ref name="Stanley, Jean-Daniel & Jorstad, Thomas F. (2005)">Stanley, Jean-Daniel & Jorstad, Thomas F. (2005), "[http://gsa.confex.com/gsa/2005AM/finalprogram/abstract_96386.htm The 365 A.D. Tsunami Destruction of Alexandria, Egypt: Erosion, Deformation of Strata and Introduction of Allochthonous Material]"</ref>
 
While Japan may have the longest recorded history of tsunamis, the sheer destruction caused by the [[2004 Indian Ocean earthquake and tsunami]] event mark it as the most devastating of its kind in modern times, killing around 230,000 people. The Sumatran region is not unused to tsunamis either, with earthquakes of varying magnitudes regularly occurring off the coast of the island.<ref>[http://www.australiangeographic.com.au/journal/the-10-biggest-tsunamis-in-history.htm/ The 10 most destructive tsunamis in history], Australian Geographic, March 16, 2011.</ref>
 
==Generation mechanisms==<!-- [[Ocean surface wave]] links here. -->
The principal generation mechanism (or cause) of a tsunami is the displacement of a substantial volume of water or perturbation of the sea.<ref>{{cite journal|doi=10.1016/j.marpetgeo.2004.10.016|last=Haugen K, Løvholt F, Harbitz C|first1=K|last2=Lovholt|first2=F|last3=Harbitz|first3=C|title=Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries|journal=Marine and Petroleum Geology|year=2005|volume=22|issue=1–2|pages=209–217}}</ref>  This displacement of water is usually attributed to either earthquakes, landslides, volcanic eruptions, glacier calvings or more rarely by meteorites and nuclear tests.<ref>{{cite journal|last=Margaritondo|first=G|title=Explaining the physics of tsunamis to undergraduate and non-physics students|journal=European Journal of Physics|year=2005|volume=26|issue=3|doi=10.1088/0143-0807/26/3/007|pages=401|bibcode = 2005EJPh...26..401M }}</ref><ref>{{cite journal|doi=10.1146/annurev.fl.19.010187.001245|last=Voit|first=S.S|title=Tsunamis|journal=Annual Review of Fluid Mechanics|year=1987|volume=19|issue=1|pages=217–236|bibcode = 1987AnRFM..19..217V }}</ref>  The waves formed in this way are then sustained by gravity. [[Tide]]s do not play any part in the generation of tsunamis.
 
===Seismicity===
Tsunami can be generated when the sea floor abruptly deforms and vertically displaces the overlying water. Tectonic earthquakes are a particular kind of earthquake that are associated with the Earth's crustal deformation; when these earthquakes occur beneath the sea, the water above the deformed area is displaced from its equilibrium position.<ref>{{cite web|title=How do earthquakes generate tsunamis?|url=http://www.geophys.washington.edu/tsunami/general/physics/earthquake.html|publisher=University of Washington}}</ref>  More specifically, a tsunami can be generated when [[thrust fault]]s associated with [[convergent boundary|convergent]] or destructive [[plate boundaries]] move abruptly, resulting in water displacement, owing to the vertical component of movement involved. Movement on normal faults will also cause displacement of the seabed, but the size of the largest of such events is normally too small to give rise to a significant tsunami.
 
<gallery mode="packed">
File:Eq-gen1.svg|Drawing of [[tectonic plate boundary]] before [[earthquake]]
File:Eq-gen2.svg|Overriding plate bulges under strain, causing [[tectonic uplift]].
File:Eq-gen3.svg|Plate slips, causing [[subsidence]] and releasing energy into water.
File:Eq-gen4.svg|The energy released produces tsunami waves.
</gallery>
 
Tsunamis have a small [[amplitude]] (wave height) offshore, and a very long [[wavelength]] (often hundreds of kilometres long, whereas normal ocean waves have a wavelength of only 30 or 40 metres),<ref>[http://www.australiangeographic.com.au/journal/facts-and-figures-how-tsunamis-form.htm/ Facts and figures: how tsunamis form], Australian Geographic, March 18, 2011.</ref> which is why they generally pass unnoticed at sea, forming only a slight swell usually about {{convert|300|mm|in}} above the normal sea surface. They grow in height when they reach shallower water, in a [[wave shoaling]] process described below. A tsunami can occur in any tidal state and even at low tide can still inundate coastal areas.
 
On April 1, 1946, a magnitude-7.8 ([[Richter Scale]]) earthquake occurred near the [[Aleutian Islands]], [[Alaska]]. It generated a tsunami which inundated [[Hilo, Hawaii|Hilo]] on the island of Hawai'i with a {{convert|14|m|ft|adj=mid|high}} surge. The area where the earthquake occurred is where the [[Pacific Ocean]] floor is [[subducting]] (or being pushed downwards) under Alaska.
 
Examples of tsunami originating at locations away from convergent boundaries include [[Storegga]] about 8,000 years ago, [[Grand Banks]] 1929, [[Papua New Guinea]] 1998 (Tappin, 2001). The Grand Banks and Papua New Guinea tsunamis came from earthquakes which destabilised sediments, causing them to flow into the ocean and generate a tsunami. They dissipated before traveling transoceanic distances.
 
The cause of the Storegga sediment failure is unknown. Possibilities include an overloading of the sediments, an earthquake or a release of gas hydrates (methane etc.).
 
The [[1960 Valdivia earthquake]] ([[Moment magnitude scale|''M''<sub>w</sub>]] 9.5) (19:11 hrs UTC), [[1964 Alaska earthquake]] (''M''<sub>w</sub> 9.2), [[2004 Indian Ocean earthquake]] (''M''<sub>w</sub> 9.2) (00:58:53 UTC) and [[2011 Tōhoku earthquake and tsunami|2011 Tōhoku earthquake]] (''M''<sub>w</sub>9.0) are recent examples of powerful [[megathrust earthquake]]s that generated tsunamis (known as [[teletsunamis]]) that can cross entire oceans. Smaller (''M''<sub>w</sub> 4.2) earthquakes in Japan can trigger tsunamis (called '''local''' and '''regional tsunamis''') that can only devastate nearby coasts, but can do so in only a few minutes.
 
===Landslides===
In the 1950s, it was discovered that larger tsunamis than had previously been believed possible could be caused by giant [[submarine landslides]].  These rapidly displace large water volumes, as energy transfers to the water at a rate faster than the water can absorb. Their existence was confirmed in 1958, when a giant landslide in [[1958 Lituya Bay megatsunami|Lituya Bay]], Alaska, caused the highest wave ever recorded, which had a height of 524 metres (over 1700 feet).  The wave didn't travel far, as it struck land almost immediately. Two people fishing in the bay were killed, but another boat amazingly managed to ride the wave. Scientists named these waves [[megatsunami]].
[[File:Hurricane Ike Gilchrist damage.jpg|right|thumb|Devastation wrought by [[Hurricane Ike]]'s meteotsunamic storm surge over the [[Bolivar Peninsula, Texas#Geography|Bolivar Peninsula]] in 2008.]]
Scientists discovered that extremely large landslides from volcanic island collapses can generate megatsunamis that can cross oceans.
<!-- comment out pending translation
<gallery>
File:Tsunami4.JPG|Most tsunamis are caused by [[submarine earthquake]]s that dislocate the oceanic crust, pushing water upwards.
File:Tsunami3.JPG|Tsunami can  be generated by erupting submarine volcanos ejecting magma into the ocean.
File:Tsunami5.JPG|A gas bubble erupting in a deep part of the ocean can also trigger a tsunami.
</gallery> -->
 
===Meteotsunamis===
Some [[meteorological]] conditions, especially deep [[depression (meteorology)|depressions]] such as [[tropical cyclones]], can generate a type of [[storm surge]] called a [[meteotsunami]] which raises water heights above normal levels, often suddenly at the shoreline.<ref name="Monserrat">{{cite journal|last=Monserrat|first=S.|coauthors=Vilibíc I. & Rabinovich A.B,|year=2006|title=Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band|journal=Natural Hazards and Earth System Sciences|volume=6|pages=1035–1051|url=http://hal-sde.archives-ouvertes.fr/docs/00/29/93/94/PDF/nhess-6-1035-2006.pdf|accessdate=23 November 2011|doi=10.5194/nhess-6-1035-2006|issue=6}}</ref>
 
In the case of deep tropical cyclones, this is due to very low [[atmospheric pressure]] and inward swirling winds causing an uplifted dome of water to form under and travel in tandem with the storm. When these water domes reach shore, they rear up in shallows and surge laterally like earthquake-generated tsunamis, typically arriving shortly after landfall of the storm's [[Eye (cyclone)|eye]].<ref>{{cite web | url = http://www.cbsnews.com/news/ikes-texas-sized-tales-of-survival | publisher = [[CBS News]] | title = Ike's Texas-Sized Tales Of Survival | date = 17 September 2008 | accessdate = 19 December 2013 | quote = ''"It was like an atomic bomb going off. Right after the eye passed, whole houses came by us at 30 miles an hour."''}}</ref><ref>[http://www.youtube.com/watch?v=rS0gv4Xbw7w Eyewitness video] of [[Typhoon Haiyan|Supertyphoon Haiyan]]'s meteotsunamic storm surge on November 6, 2013</ref>
 
==Characteristics==
[[File:Propagation du tsunami en profondeur variable.gif|thumb|When the wave enters shallow water, it slows down and its amplitude (height) increases.]]
[[File:Tsunami2.JPG|thumb|The wave further slows and amplifies as it hits land. Only the largest waves crest.]]
 
Tsunamis cause damage by two mechanisms: the smashing force of a wall of water travelling at high speed, and the destructive power of a large volume of water draining off the land and carrying a large amount of debris with it, even with waves that do not appear to be large.
 
While everyday [[wind wave]]s have a [[wavelength]] (from crest to crest) of about {{convert|100|m|ft}} and a height of roughly {{convert|2|m|ft}}, a tsunami in the deep ocean has a much larger wavelength of up to {{convert|200|km|mi}}. Such a wave travels at well over {{convert|800|km/h|mph}}, but owing to the enormous wavelength the wave oscillation at any given point takes 20 or 30 minutes to complete a cycle and has an amplitude of only about {{convert|1|m|ft}}.<ref>[http://earthsci.org/education/teacher/basicgeol/tsumami/tsunami.html Earthsci.org], Tsunamis</ref> This makes tsunamis difficult to detect over deep water, where ships are unable to feel their passage.
 
The reason for the Japanese name "harbour wave" is that sometimes a village's [[fishermen]] would sail out, and encounter no unusual waves while out at sea fishing, and come back to land to find their village devastated by a huge wave.
 
As the tsunami approaches the coast and the waters become shallow, [[wave shoaling]] compresses the wave and its speed decreases below {{convert|80|km/h|mph}}. Its wavelength diminishes to less than {{convert|20|km|mi}} and its amplitude grows enormously. Since the wave still has the same very long [[frequency|period]], the tsunami may take minutes to reach full height. Except for the very largest tsunamis, the approaching wave does not [[Breaking wave|break]], but rather appears like a fast-moving [[tidal bore]].<ref name="Walrus">{{cite web
|url=http://walrus.wr.usgs.gov/tsunami/basics.html
|title=Life of a Tsunami
|date=22 October 2008
|work=Western Coastal & Marine Geology
|publisher=United States Geographical Survey
|accessdate=2009-09-09
}}</ref> Open bays and coastlines adjacent to very deep water may shape the tsunami further into a step-like wave with a steep-breaking front.
 
When the tsunami's wave peak reaches the shore, the resulting temporary rise in sea level is termed ''run up''. Run up is measured in metres above a reference sea level.<ref name="Walrus" /> A large tsunami may feature multiple waves arriving over a period of hours, with significant time between the wave crests. The first wave to reach the shore may not have the highest run up.<ref name="Tulane">{{cite web
|url=http://www.tulane.edu/~sanelson/geol204/tsunami.htm
|title=Tsunami
|author=Prof. Stephen A. Nelson
|date=28-January–2009
|publisher=Tulane University
|accessdate=2009-09-09
}}</ref>
 
About 80% of tsunamis occur in the Pacific Ocean, but they are possible wherever there are large bodies of water, including lakes. They are caused by  earthquakes, landslides, volcanic explosions, glacier calvings, and [[bolide]]s.
 
{{clear}}
 
==Drawback==
[[Image:Shallow water wave.gif|upright=2|thumb|right|An illustration of the rhythmic "drawback" of surface water associated with a wave.  It follows that a very large drawback may herald the arrival of a very large wave.]]
 
All [[wave]]s have a positive and negative peak, i.e. a ridge and a trough.  In the case of a propagating wave like a tsunami, either may be the first to arrive.  If the first part to arrive at shore is the ridge, a massive breaking wave or sudden flooding will be the first effect noticed on land.  However if the first part to arrive is a trough, a '''drawback''' will occur as the shoreline recedes dramatically, exposing normally submerged areas.  Drawback can exceed hundreds of metres, and people unaware of the danger sometimes remain near the shore to satisfy their curiosity or to collect fish from the exposed seabed.
 
A typical wave period for a damaging tsunami is about 12 minutes. This means that if the drawback phase is the first part of the wave to arrive, the sea will recede, with areas well below sea level exposed after 3 minutes.  During the next 6 minutes the tsunami wave trough builds into a ridge, and during this time the sea is filled in and destruction occurs on land.  During the next 6 minutes, the tsunami wave changes from a ridge to a trough, causing flood waters to drain and drawback to occur again.  This may sweep victims and debris some distance from land.  The process repeats as the next wave arrives.
 
==Scales of intensity and magnitude==
As with earthquakes, several attempts have been made to set up scales of tsunami intensity or magnitude to allow comparison between different events.<ref name=Gusiakov>{{cite web|author=Gusiakov V.|title=Tsunami Quantification: how we measure the overall size of tsunami (Review of tsunami intensity and magnitude scales)|url=http://www.ngdc.noaa.gov/hazard/data/presentations/jtc/gusiakov.pdf|year=|accessdate=2009-10-18}}</ref>
 
===Intensity scales===
The first scales used routinely to measure the intensity of tsunami were the ''Sieberg-Ambraseys scale'', used in the [[Mediterranean Sea]] and the ''Imamura-Iida intensity scale'', used in the Pacific Ocean. The latter scale was modified by Soloviev, who calculated the Tsunami intensity ''I'' according to the formula
 
:<math>\,\mathit{I} = \frac{1}{2} + \log_{2} \mathit{H}_{av}</math>
 
where <math>\mathit{H}_{av}</math> is the average wave height along the nearest coast. This scale, known as the ''Soloviev-Imamura tsunami intensity scale'', is used in the global tsunami catalogues compiled by the NGDC/NOAA<ref>[http://ngdc.noaa.gov/hazard/tsu_db.shtml National Geophysical Data Center / (NGDC/WDS) Global Historical Tsunami Database]</ref> and the Novosibirsk Tsunami Laboratory as the main parameter for the size of the tsunami.
 
===Magnitude scales===
The first scale that genuinely calculated a magnitude for a tsunami, rather than an intensity at a particular location was the ML scale proposed by Murty & Loomis based on the potential energy.<ref name=Gusiakov/> Difficulties in calculating the potential energy of the tsunami mean that this scale is rarely used. Abe introduced the ''tsunami magnitude scale <math>\mathit{M}_{t}</math>'', calculated from,
 
:<math>\,\mathit{M}_{t} = {a} \log h + {b} \log R = \mathit{D}</math>
 
where ''h'' is the maximum tsunami-wave amplitude (in m) measured by a tide gauge at a distance ''R'' from the epicentre, ''a'', ''b'' and ''D'' are constants used to make the M<sub>t</sub> scale match as closely as possible with the moment magnitude scale.<ref>{{Cite book|author=Abe K.|year =1995|title=Estimate of Tsunami Run-up Heights from Earthquake Magnitudes|work=Tsunami: progress in prediction, disaster prevention, and warning|accessdate=2009-10-18|url=http://books.google.com/?id=5YjaGdQOJIwC&pg=PA21&dq=abe+magnitude+scale+tsunami+1981&q=abe%20magnitude%20scale%20tsunami%201981|isbn=978-0-7923-3483-5}}</ref>
 
==Warnings and predictions==
{{See also|Tsunami warning system}}
[[File:TsunamiHazardSign.svg|thumb|Tsunami warning sign]]
 
Drawbacks can serve as a brief warning. People who observe drawback (many survivors report an accompanying sucking sound), can survive only if they immediately run for high ground or seek the upper floors of nearby buildings. In 2004, ten-year old [[Tilly Smith]] of [[Surrey]], England, was on [[Maikhao beach]] in [[Phuket Province|Phuket]], Thailand with her parents and sister, and having learned about tsunamis recently in school, told her family that a tsunami might be imminent. Her parents warned others minutes before the wave arrived, saving dozens of lives. She credited her geography teacher, Andrew Kearney.
 
In the [[2004 Indian Ocean earthquake|2004 Indian Ocean tsunami]] drawback was not reported on the African coast or any other east-facing coasts that it reached. This was because the wave moved downwards on the eastern side of the fault line and upwards on the western side. The western pulse hit coastal Africa and other western areas.
 
A tsunami cannot be precisely predicted, even if the magnitude and location of an earthquake is known. [[Geologist]]s, [[oceanographer]]s, and [[seismologist]]s analyse each earthquake and based on many factors may or may not issue a tsunami warning. However, there are some warning signs of an impending tsunami, and automated systems can provide warnings immediately after an earthquake in time to save lives. One of the most successful systems uses bottom pressure sensors, attached to buoys, which constantly monitor the pressure of the overlying water column.
 
Regions with a high tsunami risk typically use [[tsunami warning system]]s to warn the population before the wave reaches land. On the west coast of the United States, which is prone to Pacific Ocean tsunami, warning signs indicate evacuation routes. In Japan, the community is well-educated about earthquakes and tsunamis, and along the Japanese shorelines the tsunami warning signs are reminders of the natural hazards together with a network of warning sirens, typically at the top of the cliff of surroundings hills.<ref name="Chanson_2010">{{cite book|author=[[Hubert Chanson|Chanson, H.]] |title= Tsunami Warning Signs on the Enshu Coast of Japan  |url= http://espace.library.uq.edu.au/view/UQ:203103 |publisher=Shore & Beach, Vol. 78, No. 1, pp. 52–54 |year=2010 |issn= 0037 4237}}</ref>
 
The [[Pacific Tsunami Warning Center|Pacific Tsunami Warning System]] is based in [[Honolulu]], [[Hawaii|Hawai{{okina}}i]]. It monitors Pacific Ocean seismic activity. A sufficiently large earthquake magnitude and other information triggers a tsunami warning. While the subduction zones around the Pacific are seismically active, not all earthquakes generate tsunami. Computers assist in analysing the tsunami risk of every earthquake that occurs in the Pacific Ocean and the adjoining land masses.
 
<gallery>
File:Bamfield Tsunami Hazard Zone sign.jpg|Tsunami hazard sign at [[Bamfield]], [[British Columbia]]
Image:Kamakura tsunami.jpg|A tsunami warning sign on a [[seawall]] in [[Kamakura, Kanagawa|Kamakura]], Japan, 2004
Image:The monument to the victims of tsunami.jpg|The monument to the victims of tsunami at [[Laupahoehoe]], [[Hawaii (island)|Hawaii]]
File:Tsunami Memorial Kanyakumari.JPG|Tsunami memorial in [[Kanyakumari]] beach
File:Zona de Inundabilidad.jpg|A Tsunami hazard sign (Spanish - English) in [[Iquique]], [[Chile]].
Image:Tsunami Evacuation Route signage south of Aberdeen Washington.jpg|Tsunami Evacuation Route signage along [[U.S. Route 101 in Washington|U.S. Route 101]], in [[Washington (U.S. state)|Washington]]|alt=Photo of evacuation sign
</gallery>
 
As a direct result of the Indian Ocean tsunami, a re-appraisal of the tsunami threat for all coastal areas is being undertaken by national governments and the United Nations Disaster Mitigation Committee. A tsunami warning system is being installed in the Indian Ocean.
 
[[File:Dart tsunamicover.jpg|thumb|upright|One of the deep water [[buoy]]s used in the [[Deep-ocean Assessment and Reporting of Tsunamis|DART]] tsunami warning system]]
 
[[Computer model]]s can predict tsunami arrival, usually within minutes of the arrival time. Bottom pressure sensors relay information in [[present|real time]]. Based on these pressure readings and other seismic information and the seafloor's shape ([[bathymetry]]) and coastal [[topography]], the models estimate the amplitude and surge height of the approaching tsunami. All [[Pacific Rim]] countries collaborate in the Tsunami Warning System and most regularly practice evacuation and other procedures. In Japan, such preparation is mandatory for government, local authorities, emergency services and the population.
 
Some zoologists hypothesise that some animal species have an ability to sense subsonic [[Rayleigh waves]] from an earthquake or a tsunami. If correct, monitoring their behavior could provide advance warning of earthquakes, tsunami etc. However, the evidence is controversial and is not widely accepted. There are unsubstantiated claims about the Lisbon quake that some animals escaped to higher ground, while many other animals in the same areas drowned. The phenomenon was also noted by media sources in [[Sri Lanka]] in the [[2004 Indian Ocean earthquake]].<ref>{{cite news
|publisher=BBC
|date=2005-03-27
|first=Helen|last=Lambourne
|title=Tsunami: Anatomy of a disaster |url=http://news.bbc.co.uk/1/hi/world/south_asia/4269847.stm
}}</ref><ref>{{cite news
|title=Surviving the Tsunami: What Sri Lanka's animals knew that humans didn't
|first=Christine|last=Kenneally
|publisher=Slate Magazine|url=http://www.slate.com/id/2111608|date=2004-12-30
}}</ref> It is possible that certain animals (e.g., [[elephant]]s) may have heard the sounds of the tsunami as it approached the coast. The elephants' reaction was to move away from the approaching noise. By contrast, some humans went to the shore to investigate and many drowned as a result.
 
Along the United States west coast, in addition to sirens, warnings are sent on television and radio via the [[National Weather Service]], using the [[Emergency Alert System]].
 
=== Forecast of tsunami attack probability ===
Kunihiko Shimazaki ([[University of Tokyo]]), a member of Earthquake Research committee of The Headquarters for Earthquake Research Promotion of Japanese government, mentioned the plan to public announcement of tsunami attack probability forecast at [[Japan National Press Club]] on 12 May 2011. The forecast includes tsunami height, attack area and occurrence probability within 100 years ahead. The forecast would integrate the scientific knowledge of recent [[interdisciplinarity]] and [[aftermath of the 2011 Tōhoku earthquake and tsunami]]. As the plan, announcement will be available from 2014.<ref>Forecast of earthquake probability is within 30 years ahead, however Tsunami attack probability is much lower than earthquake so that the plan is set to be within 100 years ahead. [[Yomiuri Shimbun]] 2011-05-13 ver.13S page 2, {{cite news|title=津波の襲来確率、初の公表へ…地震調査委員会|url=http://www.yomiuri.co.jp/science/news/20110512-OYT1T00947.htm|newspaper=[[Yomiuri Shimbun]]|date=2011-05-12|accessdate=2011-05-13|language=Japanese|trans_title=Newly public announce of Tsunami attack probability...Earthquake Research committee of Japan}}</ref><ref>[http://www.scientificamerican.com/article.cfm?id=tsunami-wave-of-change IndiaTimes] Kunihiko Shimazaki speaks during a press conference in Tokyo Thursday, May 12, 2011</ref><ref>{{cite news|title=Experts: Early warnings mitigated Japan disaster|url=http://www.miamiherald.com/2011/05/12/2213495/experts-early-warnings-mitigated.html|newspaper=[[The Miami Herald]]|date=2011-05-12|accessdate=2011-05-14}}{{dead link|date=July 2012}}</ref>
 
==Mitigation==
{{see also|Tsunami barrier}}
 
[[Image:Tsunami wall.jpg|thumb|upright|A [[seawall]] at [[Tsu, Mie|Tsu]], Japan|alt=Photo of seawall with building in background]]
 
In some tsunami-prone countries [[earthquake engineering]] measures have been taken to reduce the damage caused onshore.
 
[[Japan]], where tsunami science and response measures first began following a [[1896 Meiji-Sanriku earthquake|disaster in 1896]], has produced ever-more elaborate countermeasures and response plans.<ref>{{cite web|url=http://journalistsresource.org/studies/government/international/tsunami-japan/ |title=Journalist's Resource: Research for Reporting, from Harvard Shorenstein Center |publisher=Content.hks.harvard.edu |date=2012-05-30 |accessdate=2012-06-12}}</ref> That country has built many tsunami walls of up to {{convert|12|m|ft}} high to protect populated coastal areas. Other localities have built [[floodgate]]s of up to {{convert|15.5|m|ft}} high and channels to redirect the water from incoming tsunami.
 
However, their effectiveness has been questioned, as tsunami often overtop the barriers. The 2011 Fukushima nuclear disaster was directly triggered by a tsunami that exceeded the height of the plant's sea wall.<ref name=":18">Phillip Lipscy, Kenji Kushida, and Trevor Incerti. 2013. "[http://www.stanford.edu/~plipscy/LipscyKushidaIncertiEST2013.pdf The Fukushima Disaster and Japan’s Nuclear Plant Vulnerability in Comparative Perspective]." ''Environmental Science and Technology'' 47 (May), 6082-6088.</ref> The [[Historic tsunami#1993: Okushiri, Hokkaido, Japan (北海道南西沖地震)|Okushiri, Hokkaidō tsunami]] which struck [[Okushiri, Hokkaidō|Okushiri Island]] of [[Hokkaidō]] within two to five minutes of the [[1993 Hokkaido earthquake|earthquake on July 12, 1993]] created waves as much as {{convert|30|m|ft|-1}} tall—as high as a 10-story building. The port town of Aonae was completely surrounded by a tsunami wall, but the waves washed right over the wall and destroyed all the wood-framed structures in the area. The wall may have succeeded in slowing down and moderating the height of the tsunami, but it did not prevent major destruction and loss of life.<ref>{{cite web
|language=Japanese
|url=http://library.skr.jp/19930712_nanseioki.htm
|title=1993年7月12日 北海道南西沖地震}}</ref>  [[Iwate Prefecture]], which is an area at high risk from tsunami, had tsunami barriers walls totalling {{convert|25|km|mi}} long at coastal towns.  The 2011 tsunami toppled more than 50% of the walls and caused many damages.<ref>Kyodo Press [http://www.47news.jp/CN/201104/CN2011041201000147.html "Tsunami toppled more than 50% of sea wall in Iwate prefecture" (JA)]</ref>
 
==As a weapon==
There have been studies and at least one attempt to create tsunami waves as a [[tectonic weapon|weapon]].  In World War II, the [[New Zealand Army|New Zealand Military Forces]] initiated [[Project Seal]], which attempted to create small tsunamis with explosives in the area of today's [[Shakespear Regional Park]]; the attempt failed.<ref name="PART2-P9">{{cite news|title=The Hauraki Gulf Marine Park, Part 2|date=3 March 2010|work=Inset to [[The New Zealand Herald]]|page=9}}</ref>
 
==See also==
{{Portal|Disasters}}
{{columns-list|2|
* [[Deep-ocean Assessment and Reporting of Tsunamis]]
* [[Disaster preparedness]]
* [[Earthquake Early Warning (Japan)]]
* [[Higher Ground Project]]
* [[Index of wave articles]]
* [[List of earthquakes]]
* [[List of natural disasters]]
* [[Minoan eruption]]
* [[Rogue wave]]
* [[Seiche]]
* [[Sneaker wave]]
* [[Supervolcano]]
* [[Tauredunum event]]
* [[Tsunamis in lakes]]
* [[Tsunami-proof building]]
* [[Tsunami Society]]
* [[Tsunamis in the United Kingdom]]
* [[Kaikoura Peninsula|Kaikoura Canyon landslide tsunami hazard]]
}}
 
==Footnotes==
{{reflist|2}}
 
==References==
* [http://itic.ioc-unesco.org/index.php?option=com_content&view=article&id=1328&Itemid=1142&lang=en IOC Tsunami Glossary] by the [[Intergovernmental Oceanographic Commission]] (IOC) at the [http://itic.ioc-unesco.org/index.php International Tsunami Information Centre] (ITIC) of [[UNESCO]]
* [http://nthmp-history.pmel.noaa.gov/terms.html Tsunami Terminology] at [[NOAA]]
*In June 2011, the VOA [[Special English]] service of the [[Voice of America]] broadcast a 15-minute program on tsunamis as part of its weekly Science in the News series. The program included an interview with a NOAA official who oversees the agency's tsunami warning system. A transcript and MP3 of the program, intended for English learners, can be found at [http://www.voanews.com/learningenglish/home/science-technology/Large-Tsunamis-Do-Not-Happen-Often-But-the-Threat-is-Always-Present-123226568.html The Ever-Present Threat of Tsunamis.]
* [http://www.abelard.org/briefings/tsunami.php abelard.org.] ''tsunamis: tsunamis travel fast but not at infinite speed''. retrieved March 29, 2005.
* Dudley, Walter C. & Lee, Min (1988: 1st edition) ''Tsunami!'' ISBN 0-8248-1125-9 [http://tsunami.org/references.html website]
* Iwan, W.D., ''editor'', 2006, Summary report of the Great Sumatra Earthquakes and Indian Ocean tsunamis of December 26, 2004 and March 28, 2005: Earthquake Engineering Research Institute, EERI Publication #2006-06, 11 chapters, 100 page summary, plus CD-ROM with complete text and supplementary photographs, EERI Report 2006-06. ISBN 1-932884-19-X [http://www.eeri.org/ website]
* Kenneally, Christine (December 30, 2004). "Surviving the Tsunami." ''Slate''. [http://www.slate.com/id/2111608/ website]
* Lambourne, Helen (March 27, 2005). "Tsunami: Anatomy of a disaster." ''[[BBC News]]''. [http://news.bbc.co.uk/1/hi/sci/tech/4381395.stm website]
* Macey, Richard (January 1, 2005). "The Big Bang that Triggered A Tragedy," ''[[The Sydney Morning Herald]]'', p 11—quoting Dr Mark Leonard, seismologist at Geoscience Australia.
* [http://maps.ngdc.noaa.gov/viewers/hazards/ Interactive Map of Historical Tsunamis] from NOAA's National Geophysical Data Center
* Tappin, D; 2001. Local tsunamis. Geoscientist. 11–8, 4–7.
* [http://www.telegraph.co.uk/news/1480192/Girl-10-used-geography-lesson-to-save-lives.html Girl, 10, used geography lesson to save lives], ''[[Telegraph.co.uk]]''
* [http://www.noypi.ph/index.php/nation/3283-key-locations-in-philippines-warned-to-prepare-for-tsunami.html Philippines warned to prepare for Japan's tsunami], ''Noypi.ph''
 
==External links==
{{Commons category}}
* [http://nctr.pmel.noaa.gov/Mov/DART_04.swf Animation of DART tsunami detection system]
* [http://ifmaxp1.ifm.uni-hamburg.de/tsunami.shtml Can HF Radar detect Tsunamis?] – University of Hamburg HF-Radar.
* [http://purl.fdlp.gov/GPO/gpo36685 Community Exposure to Tsunami Hazards in California] [[United States Geological Survey]]
* [http://www.envirtech.org/envirtech_tsunameter.htm Envirtech Tsunami Warning System] – Based on seabed seismics and sea level gauges.
* [http://geology.com/records/biggest-tsunami.shtml Geology.com] ''The highest tsunami was caused by rockfall''
* [http://itic.ioc-unesco.org/index.php?option=com_content&view=article&id=1328&Itemid=1142&lang=en IOC Tsunami Glossary] by the [[Intergovernmental Oceanographic Commission]] (IOC) at the [http://itic.ioc-unesco.org/index.php International Tsunami Information Centre] (ITIC) of [[UNESCO]]
* [http://www.edu4hazards.org/tsunami.html How to survive a tsunami] – Guide for children and youth
* [http://www.geohazards.no/ International Centre for Geohazards (ICG)]
* [http://ioc.unesco.org/itsu/ ITSU] – Coordination Group for the Pacific Tsunami Warning System.
* [http://www.jtic.org/ Jakarta Tsunami Information Centre]
* [http://ngdc.noaa.gov/hazard/tsu.shtml National Geophysical Data Center (NGDC) Tsunami Data]
* [http://nthmp.tsunami.gov/ National Tsunami Hazard Mitigation Program] ''Coordinated U.S. Federal/State effort''
* [http://nctr.pmel.noaa.gov/ NOAA Center for Tsunami Research (NCTR)]
* [http://www.tsunami.noaa.gov/ NOAA Tsunami] – General description of tsunamis and the United States agency NOAA's role
* [http://www.pbs.org/nova/tsunami/ NOVA: Wave That Shook The World] – Site and special report shot within days of the 2004 Indian Ocean tsunami.
* [http://www.tsunami.org/ Pacific Tsunami Museum]
* [http://www.sthjournal.org/ ''Science of Tsunami Hazards'' journal]
* [http://nctr.pmel.noaa.gov/pubs.html Tsunami scientific publications list]
* [http://www.scientificamerican.com/article.cfm?id=tsunami-wave-of-change Scientific American Magazine (January 2006 Issue) Tsunami: Wave of Change] What we can learn from the Indian Ocean tsunami of December 2004.
* [http://www.ncdc.noaa.gov/oa/esb/?goal=weather&file=events/tsunami/ Social & Economic Costs of Tsunamis in the United States] from "NOAA Socioeconomics" website initiative
* [http://tsunami.gov/ Tsunami Centers] – United States National Weather Service.
* [http://tsunami.name/ Tsunami database with detailed statistics]
* [http://nctr.pmel.noaa.gov/database_devel.html Interactive map of recent and historical tsunami events] ''with links to graphics, animations and data''
* [http://tsunami-warning.org/ Tsunami Warning] – Tsunami warnings via mobile phone.
* [http://walrus.wr.usgs.gov/tsunami/ Tsunamis and Earthquakes]
* [http://pubs.usgs.gov/circ/c1187/ USGS: Surviving a tsunami] (United States)
* [http://www.igrac.net/publications/134 Impact of Tsunami on groundwater resources] IGRAC International Groundwater Resources Assessment Centre
* [http://espace.library.uq.edu.au/view.php?pid=UQ:7781 Tsunami Surges on Dry Coastal Plains: Application of Dam Break Wave Equations], [[Coastal Engineering Journal]], 48 4: 355-370
* [http://www.q-mag.org/theeventofjuly21/index.html What happened on July 21, 365 A.D.?] An ancient Mediterranean tsunami event
 
===Images, video, and animations===
* '''[http://www.youtube.com/noaapmel#p/c/3BDBAAAA7D4EB2DA/8/4rWDrZIucAQ Tsunami videos on YouTube]''' from the [http://nctr.pmel.noaa.gov/ NOAA Center for Tsunami Research]
* [http://www.archive.org/details/opensource_movies Amateur Camcorder Video Streams of the December 26, 2004 tsunami that hit Sri Lanka, Thailand and Indonesia (search on tsunamis)]
* [http://www.geophys.washington.edu/tsunami/general/physics/characteristics.html Animation of 1960 tsunami originating outside coast of Chile]
* [http://nctr.pmel.noaa.gov/animate.html Animations of actual and simulated tsunami events] from the NOAA Center for Tsunami Research
* [http://archives.cbc.ca/IDD-1-75-1561/science_technology/earthquakes_and_tsunamis/ CBC Digital Archives – Canada's Earthquakes and Tsunamis]
* [http://www.geophys.washington.edu/tsunami/general/physics/runup.html Computer-generated animation of a tsunami]
* [http://www.ngdc.noaa.gov/hazardimages/ Natural Hazards Image Database (tsunami, volcano and earthquake damage)] from NOAA National Geophysical Data Center
* [http://www.forskning.no/Artikler/2006/juni/1149444923.73 Origin of a Tsunami – animation showing how the shifting of continental plates in the Indian Ocean created the catastrophe of December 26, 2004.]
* [http://www.mindef.gov.sg/tsunami/photos1.asp Photos] and [http://www.mindef.gov.sg/tsunami/videos.asp Videos] of Humanitarian Assistance to Tsunami-hit areas by the [[Singapore Armed Forces]]
* Tsunami Aftermath in [http://thanks4supporting.us/tsunami-aftermath-penang-island-malaysia.html Penang] and [http://thanks4supporting.us/visit-to-kota-kuala-muda.html Kuala Muda, Kedah].
* [http://www.crisp.nus.edu.sg/tsunami/tsunami.html Satellite Images of Tsunami Affected Areas] High resolution satellite images showing the effects of the 2004 tsunami on the affected areas in Indonesia, Thailand and Nicobar island of India.
* [http://www.riveroflife.be/tsunami/index.html The Survivors – A moving travelogue full of stunning images along the tsunami ravaged South-Western Coast of India] (Unavailable)
* [http://nctr.pmel.noaa.gov/animate.html Animations of tsunami propagation model results] ''for actual tsunami events''
* [http://www.youtube.com/watch?v=RDOuwMj7Xzo&feature=PlayList&p=F78585C6FE0C11CA&playnext=1&playnext_from=PL&index=81 2004 Boxing Day Tsunami] at [[YouTube]]
* [http://www.youtube.com/watch?v=k4w27IczOTk Raw Video: Tsunami Slams Northeast Japan], a video of the [[2011 Tōhoku earthquake and tsunami|2011 Tōhoku (Japan) earthquake tsunami]] by [[Associated Press]] at YouTube, showing the wave from a tsunami engulfing a town and farmlands.
* [http://www.flow3d.com/pdfs/p/maritime/three-dimensional-tsunami-runup-simulation-for-the-port-of-koborinai-16-13.pdf A simulation of tsunami run-up of the tsunami of March 11, 2011 at Koborinai, Miyako, Japan, where the tsunami reached a height of 37.9 m (124 ft)]
* [http://www.tmba.tv/broadcastanimation/weathergraphics/what-casues-a-tsunami/ What Causes A Tsunami: Animation (NOAA)]
 
{{physical oceanography}}
{{natural disasters}}
{{Disasters}}
 
[[Category:Tsunami| ]]
[[Category:Earthquake engineering]]
[[Category:Flood]]
[[Category:Forms of water]]
[[Category:Geological hazards]]
[[Category:Japanese words and phrases]]
[[Category:Natural hazards]]
[[Category:Physical oceanography]]
[[Category:Risk management]]
[[Category:Water waves]]
 
{{Link GA|de}}
{{Link FA|eu}}
{{Link FA|af}}

Latest revision as of 01:30, 11 January 2015

Even if your initial inquiry is only one search engine - orlando seo Google. Another good tactic for business owners to protect themselves from dubious SEO service providers must introduce, employ and apply such analytical means into the services they offer see below.

my web site :: seo company in orlando