Density functional theory: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
Fixed ABC of DFT url
en>Free0willy
Wrong expression for the density
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
[[File:High speed03.jpg|thumb|Fast shutter speed, short exposure of a water wave.]]
Some users of computer are aware that their computer become slower or have certain mistakes following using for a while. But most persons don't know how to accelerate their computer and some of them don't dare to operate it. They always find several experts to keep the computer inside advantageous condition however, they have to spend several cash on it. Actually, you are able to do it by oneself. There are numerous registry cleaner software which there are 1 of them online. Some of them are free plus you only should download them. After installing it, this registry cleaner software usually scan the registry. If it found these errors, it usually report you and you can delete them to keep a registry clean. It is easy to operate and it is very the best technique to repair registry.<br><br>If it's not as big of the issue as you think it is, it may possibly be resolved conveniently by running a Startup Repair or by System Restore Utility. Again it can be as effortless because running an anti-virus check or cleaning the registry.<br><br>H/w connected error handling - whenever hardware causes BSOD installing latest fixes for the hardware and/ or motherboard could enable. You can also add brand-new hardware that is compatible with the program.<br><br>Your computer was especially fast when we first purchased it. Because a registry was rather clean plus free of mistakes. After time, the computer starts to run slow plus freezes up now and then. Because there are errors accumulating inside it plus several information is rewritten or even completely deleted by your wrong uninstall of programs, wrong operations, malware or alternative things. That is the reason why a computer performance decreases slowly plus become surprisingly unstable.<br><br>The [http://bestregistrycleanerfix.com/registry-mechanic registry mechanic] must come as standard with a back up and restore facility. This should be an convenient to apply task.That signifies which if you encounter a problem with a PC after using a registry cleaning you can merely restore the settings.<br><br>Active X controls are used across the whole spectrum of computer and web technologies. These controls are referred to as the building blocks of the web and as the glue which puts it all together. It is a standard which is employed by all programmers to create the web more helpful plus interactive. Without these control practices there would basically be no public web.<br><br>The reason why this really is significant, is because most 'dumb' registry products really delete these files without even recognizing. They simply browse through a registry and try and find the many difficulties possible. They then delete any files they see fit, and because they are 'dumb', they don't really care. This means that if they delete a few of these vital program files, they are actually going to result a LOT more harm than good.<br><br>There is a lot a superior registry cleaner will do for your computer. It could check for and download updates for Windows, Java and Adobe. Keeping changes present is an significant part of advantageous computer wellness. It can moreover safeguard your personal plus business confidentiality too as the online protection.
[[File:Slow speed03.jpg|thumb|Slow shutter speed, long exposure of the wave.]]
 
In [[photography]], '''exposure value''' ('''EV''') is a number that represents a combination of a [[camera]]'s [[shutter speed]] and [[f-number]], such that all combinations that yield the same [[exposure (photography)|exposure]] have the same EV value (for any fixed scene [[luminance]]). Exposure value also is used to indicate an interval on the photographic exposure scale, with 1 EV corresponding to a standard power-of-2 exposure step, commonly referred to as a '''stop'''.<ref>In optics, the term "stop" properly refers to the aperture itself, while the term "step" refers to a division of the exposure scale. Some authors, e.g., [[#CITEREFDavis1999|Davis (1999]], 13), prefer the term "stop"because they refer to steps (e.g., on a step tablet)
that are other than powers of 2. ISO standards generally use "step", while photographers normally use "stop".</ref>
 
The EV concept was developed in an attempt to simplify choosing among combinations of equivalent camera settings, by the German shutter manufacturer {{ill|de|Friedrich Deckel|Friedrich Deckel}} in the 1950s ([[#CITEREFRay2000|Ray 2000]], 318)<!-- This reference speaks about "1950s in Germany", not about Deckel specifically. Various Deckel patents exist, f.e. BP 744962 in 1952/1956 by Hans Deckel and Friedrich Wilhelm Deckel, US patent 2911897 in 1955/1959 by Christoph Fahl, Hans Deckel and Friedrich Wilhelm Deckel. -->.  Exposure value was originally indicated by the quantity symbol <math>E_v</math>; this symbol continues to be used in [[ISO standard]]s, but the [[acronym]] EV is [[Photographers' abbreviations|more common elsewhere]].
 
Although all camera settings with the same EV nominally give the same exposure, they do not necessarily give the same picture. The f-number (relative [[aperture]]) determines the [[depth of field]], and the shutter speed ([[exposure time]]) determines the amount of [[motion blur]], as illustrated by the two images at the right (and at long exposure times, as a second-order effect, the light-sensitive medium may exhibit [[reciprocity failure]], which is a change of light sensitivity dependent on the [[irradiance]] at the film).
 
==Formal definition==
 
[[File:Spinning into Action.jpg|thumb|Extended exposure time of 26 seconds.]]
 
Exposure value is a base-2 [[logarithm]]ic scale defined by [[#CITEREFRay2000|Ray (2000, p. 318)]]:
 
:<math>\mathrm {EV} = \log_2 {\frac {N^2} {t} } \,,</math>
 
where
 
* ''N'' is the relative [[aperture]] ([[f-number]])
* ''t'' is the exposure time (“[[shutter speed]]”) in seconds<ref name="no_units">In a mathematical expression involving physical quantities, it is common practice to require that the argument to a [[transcendental function]] (such as the [[logarithm]]) be [[dimensionless]]. The definition of EV ignores the units in the denominator and uses only the [[ISO 31-0#Quantities and units|numerical value]] of the exposure time in seconds; EV is not the expression of a physical law, but simply a number for encoding combinations of camera settings.</ref><!-- TBD: I guess this can be improved to have a mathmatically correct formula here. -->
 
EV&nbsp;0 corresponds to an exposure time of 1&nbsp;[[second|s]] and a relative aperture of <var>f</var>/1.0.
If the EV is known, it can be used to select combinations of exposure time and <var>f</var>-number, as shown in Table&nbsp;1.
 
<!-- TBD. The following sentence apparently still causes confusion amongst readers and should be further improved for clarification. -->
Each increment of 1 in exposure value corresponds to a change of one “step” (or, more commonly, one “stop”) in exposure, i.e., half as much exposure, either by halving the exposure time or halving the aperture area, or a combination of such changes. Greater exposure values are appropriate for photography in more brightly lit situations, or for higher [[film speed|ISO speed]]s.
 
==Camera settings vs. photometric exposure==
 
[[File:Shutter with EV scale.png|thumb|Shutter with EV indicator, figure from US patent 2829574, Inventor: K. Gebele, original assignee: Hans Deckel, filing date: Nov 2, 1953, issue date: Apr 8, 1958]]
 
"Exposure value" actually indicates combinations of camera settings rather than the [[Photometry (optics)|photometric]] quantity of luminous exposure ''H''<sub>v</sub> (aka photometric exposure), which is given by ([[#CITEREFRay2000|Ray 2000]], 310)
 
:<math>H_\mathrm{v} = E_\mathrm{v} \cdot t \,,</math>
 
where
 
* ''H''<sub>v</sub> is the [[photometric exposure|photometric]] / [[luminous exposure]]
* ''E''<sub>v</sub> is the image-plane [[illuminance]] ('''not''' EV, the exposure value)
* ''t'' is the exposure time
 
The illuminance ''E''<sub>v</sub> is controlled by the <var>f</var>-number but also depends on the scene [[luminance]] ''L''<sub>v</sub>. To avoid confusion, some authors ([[#CITEREFRay2000|Ray 2000]], 310) have used '''camera exposure''' to refer to combinations of camera settings. The 1964 ASA standard for automatic exposure controls for cameras, [[#CITEREFASA PH2.15-1964|ASA PH2.15-1964]], took the same approach, and also used the more descriptive term '''camera exposure settings'''.
 
Common practice among photographers is nonetheless to use “exposure” to refer to camera settings as well as to photometric exposure.
 
==EV as an indicator of camera settings==
 
EV corresponds simply to a combination of a shutter speed and an aperture setting, independent of any ISO setting—independent even of whether there is film in the camera or any light available.
 
:{| class="wikitable" style="text-align: right;"
|+ Table 1. Exposure times, in seconds or minutes (m), for various exposure values and <var>f</var>-numbers
! rowspan="2" style="padding: 0.1em 0.5em;" | EV
! colspan="13" | <var>f</var>-number
|-
! 1.0 !! 1.4 !! 2.0 !! 2.8 !! 4.0 !! 5.6 !! 8.0 !! 11 !! 16 !! 22 !! 32 !! 45 !! 64
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  &minus;6
| style="padding: 0.1em 0.5em;" |  60
| style="padding: 0.1em 0.5em;" |  2 m
| style="padding: 0.1em 0.5em;" |  4 m
| style="padding: 0.1em 0.5em;" |  8 m
| style="padding: 0.1em 0.5em;" |  16 m
| style="padding: 0.1em 0.5em;" |  32 m
| style="padding: 0.1em 0.5em;" |  64 m
| style="padding: 0.1em 0.5em;" |  128 m
| style="padding: 0.1em 0.5em;" |  256 m
| style="padding: 0.1em 0.5em;" |  512 m
| style="padding: 0.1em 0.5em;" |  1024 m
| style="padding: 0.1em 0.5em;" |  2048 m
| style="padding: 0.1em 0.5em;" |  4096 m
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  &minus;5
| style="padding: 0.1em 0.5em;" |  30
| style="padding: 0.1em 0.5em;" |  60
| style="padding: 0.1em 0.5em;" |  2 m
| style="padding: 0.1em 0.5em;" |  4 m
| style="padding: 0.1em 0.5em;" |  8 m
| style="padding: 0.1em 0.5em;" |  16 m
| style="padding: 0.1em 0.5em;" |  32 m
| style="padding: 0.1em 0.5em;" |  64 m
| style="padding: 0.1em 0.5em;" |  128 m
| style="padding: 0.1em 0.5em;" |  256 m
| style="padding: 0.1em 0.5em;" |  512 m
| style="padding: 0.1em 0.5em;" |  1024 m
| style="padding: 0.1em 0.5em;" |  2048 m
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  &minus;4
| style="padding: 0.1em 0.5em;" |  15
| style="padding: 0.1em 0.5em;" |  30
| style="padding: 0.1em 0.5em;" |  60
| style="padding: 0.1em 0.5em;" |  2 m
| style="padding: 0.1em 0.5em;" |  4 m
| style="padding: 0.1em 0.5em;" |  8 m
| style="padding: 0.1em 0.5em;" |  16 m
| style="padding: 0.1em 0.5em;" |  32 m
| style="padding: 0.1em 0.5em;" |  64 m
| style="padding: 0.1em 0.5em;" |  128 m
| style="padding: 0.1em 0.5em;" |  256 m
| style="padding: 0.1em 0.5em;" |  512 m
| style="padding: 0.1em 0.5em;" |  1024 m
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  &minus;3
| style="padding: 0.1em 0.5em;" |  8
| style="padding: 0.1em 0.5em;" |  15
| style="padding: 0.1em 0.5em;" |  30
| style="padding: 0.1em 0.5em;" |  60
| style="padding: 0.1em 0.5em;" |  2 m
| style="padding: 0.1em 0.5em;" |  4 m
| style="padding: 0.1em 0.5em;" |  8 m
| style="padding: 0.1em 0.5em;" |  16 m
| style="padding: 0.1em 0.5em;" |  32 m
| style="padding: 0.1em 0.5em;" |  64 m
| style="padding: 0.1em 0.5em;" |  128 m
| style="padding: 0.1em 0.5em;" |  256 m
| style="padding: 0.1em 0.5em;" |  512 m
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  &minus;2
| style="padding: 0.1em 0.5em;" |  4
| style="padding: 0.1em 0.5em;" |  8
| style="padding: 0.1em 0.5em;" |  15
| style="padding: 0.1em 0.5em;" |  30
| style="padding: 0.1em 0.5em;" |  60
| style="padding: 0.1em 0.5em;" |  2 m
| style="padding: 0.1em 0.5em;" |  4 m
| style="padding: 0.1em 0.5em;" |  8 m
| style="padding: 0.1em 0.5em;" |  16 m
| style="padding: 0.1em 0.5em;" |  32 m
| style="padding: 0.1em 0.5em;" |  64 m
| style="padding: 0.1em 0.5em;" |  128 m
| style="padding: 0.1em 0.5em;" |  256 m
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  &minus;1
| style="padding: 0.1em 0.5em;" |  2
| style="padding: 0.1em 0.5em;" |  4
| style="padding: 0.1em 0.5em;" |  8
| style="padding: 0.1em 0.5em;" |  15
| style="padding: 0.1em 0.5em;" |  30
| style="padding: 0.1em 0.5em;" |  60
| style="padding: 0.1em 0.5em;" |  2 m
| style="padding: 0.1em 0.5em;" |  4 m
| style="padding: 0.1em 0.5em;" |  8 m
| style="padding: 0.1em 0.5em;" |  16 m
| style="padding: 0.1em 0.5em;" |  32 m
| style="padding: 0.1em 0.5em;" |  64 m
| style="padding: 0.1em 0.5em;" |  128 m
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  0
| style="padding: 0.1em 0.5em;" |  1
| style="padding: 0.1em 0.5em;" |  2
| style="padding: 0.1em 0.5em;" |  4
| style="padding: 0.1em 0.5em;" |  8
| style="padding: 0.1em 0.5em;" |  15
| style="padding: 0.1em 0.5em;" |  30
| style="padding: 0.1em 0.5em;" |  60
| style="padding: 0.1em 0.5em;" |  2 m
| style="padding: 0.1em 0.5em;" |  4 m
| style="padding: 0.1em 0.5em;" |  8 m
| style="padding: 0.1em 0.5em;" |  16 m
| style="padding: 0.1em 0.5em;" |  32 m
| style="padding: 0.1em 0.5em;" |  64 m
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  1
| style="padding: 0.1em 0.5em;" |  1/2
| style="padding: 0.1em 0.5em;" |  1
| style="padding: 0.1em 0.5em;" |  2
| style="padding: 0.1em 0.5em;" |  4
| style="padding: 0.1em 0.5em;" |  8
| style="padding: 0.1em 0.5em;" |  15
| style="padding: 0.1em 0.5em;" |  30
| style="padding: 0.1em 0.5em;" |  60
| style="padding: 0.1em 0.5em;" |  2 m
| style="padding: 0.1em 0.5em;" |  4 m
| style="padding: 0.1em 0.5em;" |  8 m
| style="padding: 0.1em 0.5em;" |  16 m
| style="padding: 0.1em 0.5em;" |  32 m
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  2
| style="padding: 0.1em 0.5em;" |  1/4
| style="padding: 0.1em 0.5em;" |  1/2
| style="padding: 0.1em 0.5em;" |  1
| style="padding: 0.1em 0.5em;" |  2
| style="padding: 0.1em 0.5em;" |  4
| style="padding: 0.1em 0.5em;" |  8
| style="padding: 0.1em 0.5em;" |  15
| style="padding: 0.1em 0.5em;" |  30
| style="padding: 0.1em 0.5em;" |  60
| style="padding: 0.1em 0.5em;" |  2 m
| style="padding: 0.1em 0.5em;" |  4 m
| style="padding: 0.1em 0.5em;" |  8 m
| style="padding: 0.1em 0.5em;" |  16 m
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  3
| style="padding: 0.1em 0.5em;" |  1/8
| style="padding: 0.1em 0.5em;" |  1/4
| style="padding: 0.1em 0.5em;" |  1/2
| style="padding: 0.1em 0.5em;" |  1
| style="padding: 0.1em 0.5em;" |  2
| style="padding: 0.1em 0.5em;" |  4
| style="padding: 0.1em 0.5em;" |  8
| style="padding: 0.1em 0.5em;" |  15
| style="padding: 0.1em 0.5em;" |  30
| style="padding: 0.1em 0.5em;" |  60
| style="padding: 0.1em 0.5em;" |  2 m
| style="padding: 0.1em 0.5em;" |  4 m
| style="padding: 0.1em 0.5em;" |  8 m
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  4
| style="padding: 0.1em 0.5em;" |  1/15
| style="padding: 0.1em 0.5em;" |  1/8
| style="padding: 0.1em 0.5em;" |  1/4
| style="padding: 0.1em 0.5em;" |  1/2
| style="padding: 0.1em 0.5em;" |  1
| style="padding: 0.1em 0.5em;" |  2
| style="padding: 0.1em 0.5em;" |  4
| style="padding: 0.1em 0.5em;" |  8
| style="padding: 0.1em 0.5em;" |  15
| style="padding: 0.1em 0.5em;" |  30
| style="padding: 0.1em 0.5em;" |  60
| style="padding: 0.1em 0.5em;" |  2 m
| style="padding: 0.1em 0.5em;" |  4 m
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  5
| style="padding: 0.1em 0.5em;" |  1/30
| style="padding: 0.1em 0.5em;" |  1/15
| style="padding: 0.1em 0.5em;" |  1/8
| style="padding: 0.1em 0.5em;" |  1/4
| style="padding: 0.1em 0.5em;" |  1/2
| style="padding: 0.1em 0.5em;" |  1
| style="padding: 0.1em 0.5em;" |  2
| style="padding: 0.1em 0.5em;" |  4
| style="padding: 0.1em 0.5em;" |  8
| style="padding: 0.1em 0.5em;" |  15
| style="padding: 0.1em 0.5em;" |  30
| style="padding: 0.1em 0.5em;" |  60
| style="padding: 0.1em 0.5em;" |  2 m
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  6
| style="padding: 0.1em 0.5em;" |  1/60
| style="padding: 0.1em 0.5em;" |  1/30
| style="padding: 0.1em 0.5em;" |  1/15
| style="padding: 0.1em 0.5em;" |  1/8
| style="padding: 0.1em 0.5em;" |  1/4
| style="padding: 0.1em 0.5em;" |  1/2
| style="padding: 0.1em 0.5em;" |  1
| style="padding: 0.1em 0.5em;" |  2
| style="padding: 0.1em 0.5em;" |  4
| style="padding: 0.1em 0.5em;" |  8
| style="padding: 0.1em 0.5em;" |  15
| style="padding: 0.1em 0.5em;" |  30
| style="padding: 0.1em 0.5em;" |  60
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  7
| style="padding: 0.1em 0.5em;" |  1/125
| style="padding: 0.1em 0.5em;" |  1/60
| style="padding: 0.1em 0.5em;" |  1/30
| style="padding: 0.1em 0.5em;" |  1/15
| style="padding: 0.1em 0.5em;" |  1/8
| style="padding: 0.1em 0.5em;" |  1/4
| style="padding: 0.1em 0.5em;" |  1/2
| style="padding: 0.1em 0.5em;" |  1
| style="padding: 0.1em 0.5em;" |  2
| style="padding: 0.1em 0.5em;" |  4
| style="padding: 0.1em 0.5em;" |  8
| style="padding: 0.1em 0.5em;" |  15
| style="padding: 0.1em 0.5em;" |  30
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  8
| style="padding: 0.1em 0.5em;" |  1/250
| style="padding: 0.1em 0.5em;" |  1/125
| style="padding: 0.1em 0.5em;" |  1/60
| style="padding: 0.1em 0.5em;" |  1/30
| style="padding: 0.1em 0.5em;" |  1/15
| style="padding: 0.1em 0.5em;" |  1/8
| style="padding: 0.1em 0.5em;" |  1/4
| style="padding: 0.1em 0.5em;" |  1/2
| style="padding: 0.1em 0.5em;" |  1
| style="padding: 0.1em 0.5em;" |  2
| style="padding: 0.1em 0.5em;" |  4
| style="padding: 0.1em 0.5em;" |  8
| style="padding: 0.1em 0.5em;" |  15
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  9
| style="padding: 0.1em 0.5em;" |  1/500
| style="padding: 0.1em 0.5em;" |  1/250
| style="padding: 0.1em 0.5em;" |  1/125
| style="padding: 0.1em 0.5em;" |  1/60
| style="padding: 0.1em 0.5em;" |  1/30
| style="padding: 0.1em 0.5em;" |  1/15
| style="padding: 0.1em 0.5em;" |  1/8
| style="padding: 0.1em 0.5em;" |  1/4
| style="padding: 0.1em 0.5em;" |  1/2
| style="padding: 0.1em 0.5em;" |  1
| style="padding: 0.1em 0.5em;" |  2
| style="padding: 0.1em 0.5em;" |  4
| style="padding: 0.1em 0.5em;" |  8
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  10
| style="padding: 0.1em 0.5em;" |  1/1000
| style="padding: 0.1em 0.5em;" |  1/500
| style="padding: 0.1em 0.5em;" |  1/250
| style="padding: 0.1em 0.5em;" |  1/125
| style="padding: 0.1em 0.5em;" |  1/60
| style="padding: 0.1em 0.5em;" |  1/30
| style="padding: 0.1em 0.5em;" |  1/15
| style="padding: 0.1em 0.5em;" |  1/8
| style="padding: 0.1em 0.5em;" |  1/4
| style="padding: 0.1em 0.5em;" |  1/2
| style="padding: 0.1em 0.5em;" |  1
| style="padding: 0.1em 0.5em;" |  2
| style="padding: 0.1em 0.5em;" |  4
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  11
| style="padding: 0.1em 0.5em;" |  1/2000
| style="padding: 0.1em 0.5em;" |  1/1000
| style="padding: 0.1em 0.5em;" |  1/500
| style="padding: 0.1em 0.5em;" |  1/250
| style="padding: 0.1em 0.5em;" |  1/125
| style="padding: 0.1em 0.5em;" |  1/60
| style="padding: 0.1em 0.5em;" |  1/30
| style="padding: 0.1em 0.5em;" |  1/15
| style="padding: 0.1em 0.5em;" |  1/8
| style="padding: 0.1em 0.5em;" |  1/4
| style="padding: 0.1em 0.5em;" |  1/2
| style="padding: 0.1em 0.5em;" |  1
| style="padding: 0.1em 0.5em;" |  2
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  12
| style="padding: 0.1em 0.5em;" |  1/4000
| style="padding: 0.1em 0.5em;" |  1/2000
| style="padding: 0.1em 0.5em;" |  1/1000
| style="padding: 0.1em 0.5em;" |  1/500
| style="padding: 0.1em 0.5em;" |  1/250
| style="padding: 0.1em 0.5em;" |  1/125
| style="padding: 0.1em 0.5em;" |  1/60
| style="padding: 0.1em 0.5em;" |  1/30
| style="padding: 0.1em 0.5em;" |  1/15
| style="padding: 0.1em 0.5em;" |  1/8
| style="padding: 0.1em 0.5em;" |  1/4
| style="padding: 0.1em 0.5em;" |  1/2
| style="padding: 0.1em 0.5em;" |  1
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  13
| style="padding: 0.1em 0.5em;" |  1/8000
| style="padding: 0.1em 0.5em;" |  1/4000
| style="padding: 0.1em 0.5em;" |  1/2000
| style="padding: 0.1em 0.5em;" |  1/1000
| style="padding: 0.1em 0.5em;" |  1/500
| style="padding: 0.1em 0.5em;" |  1/250
| style="padding: 0.1em 0.5em;" |  1/125
| style="padding: 0.1em 0.5em;" |  1/60
| style="padding: 0.1em 0.5em;" |  1/30
| style="padding: 0.1em 0.5em;" |  1/15
| style="padding: 0.1em 0.5em;" |  1/8
| style="padding: 0.1em 0.5em;" |  1/4
| style="padding: 0.1em 0.5em;" |  1/2
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  14
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |  1/8000
| style="padding: 0.1em 0.5em;" |  1/4000
| style="padding: 0.1em 0.5em;" |  1/2000
| style="padding: 0.1em 0.5em;" |  1/1000
| style="padding: 0.1em 0.5em;" |  1/500
| style="padding: 0.1em 0.5em;" |  1/250
| style="padding: 0.1em 0.5em;" |  1/125
| style="padding: 0.1em 0.5em;" |  1/60
| style="padding: 0.1em 0.5em;" |  1/30
| style="padding: 0.1em 0.5em;" |  1/15
| style="padding: 0.1em 0.5em;" |  1/8
| style="padding: 0.1em 0.5em;" |  1/4
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  15
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |  1/8000
| style="padding: 0.1em 0.5em;" |  1/4000
| style="padding: 0.1em 0.5em;" |  1/2000
| style="padding: 0.1em 0.5em;" |  1/1000
| style="padding: 0.1em 0.5em;" |  1/500
| style="padding: 0.1em 0.5em;" |  1/250
| style="padding: 0.1em 0.5em;" |  1/125
| style="padding: 0.1em 0.5em;" |  1/60
| style="padding: 0.1em 0.5em;" |  1/30
| style="padding: 0.1em 0.5em;" |  1/15
| style="padding: 0.1em 0.5em;" |  1/8
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  16
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |  1/8000
| style="padding: 0.1em 0.5em;" |  1/4000
| style="padding: 0.1em 0.5em;" |  1/2000
| style="padding: 0.1em 0.5em;" |  1/1000
| style="padding: 0.1em 0.5em;" |  1/500
| style="padding: 0.1em 0.5em;" |  1/250
| style="padding: 0.1em 0.5em;" |  1/125
| style="padding: 0.1em 0.5em;" |  1/60
| style="padding: 0.1em 0.5em;" |  1/30
| style="padding: 0.1em 0.5em;" |  1/15
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  17
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |  1/8000
| style="padding: 0.1em 0.5em;" |  1/4000
| style="padding: 0.1em 0.5em;" |  1/2000
| style="padding: 0.1em 0.5em;" |  1/1000
| style="padding: 0.1em 0.5em;" |  1/500
| style="padding: 0.1em 0.5em;" |  1/250
| style="padding: 0.1em 0.5em;" |  1/125
| style="padding: 0.1em 0.5em;" |  1/60
| style="padding: 0.1em 0.5em;" |  1/30
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  18
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |  1/8000
| style="padding: 0.1em 0.5em;" |  1/4000
| style="padding: 0.1em 0.5em;" |  1/2000
| style="padding: 0.1em 0.5em;" |  1/1000
| style="padding: 0.1em 0.5em;" |  1/500
| style="padding: 0.1em 0.5em;" |  1/250
| style="padding: 0.1em 0.5em;" |  1/125
| style="padding: 0.1em 0.5em;" |  1/60
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  19
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |  1/8000
| style="padding: 0.1em 0.5em;" |  1/4000
| style="padding: 0.1em 0.5em;" |  1/2000
| style="padding: 0.1em 0.5em;" |  1/1000
| style="padding: 0.1em 0.5em;" |  1/500
| style="padding: 0.1em 0.5em;" |  1/250
| style="padding: 0.1em 0.5em;" |  1/125
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  20
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |  1/8000
| style="padding: 0.1em 0.5em;" |  1/4000
| style="padding: 0.1em 0.5em;" |  1/2000
| style="padding: 0.1em 0.5em;" |  1/1000
| style="padding: 0.1em 0.5em;" |  1/500
| style="padding: 0.1em 0.5em;" |  1/250
|-
! style="text-align: right; padding: 0.1em 0.5em;" |  21
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |
| style="padding: 0.1em 0.5em;" |  1/8000
| style="padding: 0.1em 0.5em;" |  1/4000
| style="padding: 0.1em 0.5em;" |  1/2000
| style="padding: 0.1em 0.5em;" |  1/1000
| style="padding: 0.1em 0.5em;" |  1/500
|-
! rowspan="2" style="padding: 0.1em 0.5em;" | EV
! 1.0 !! 1.4 !! 2.0 !! 2.8 !! 4.0 !! 5.6 !! 8.0 !! 11 !! 16 !! 22 !! 32 !! 45 !! 64
|-
! colspan="13" | <var>f</var>-number
|-
|}
 
[[File:Exposure program chart.gif|thumb|600px|none|Popular exposure chart type, showing exposure values EV (red lines) as combinations of [[aperture]] and [[Shutter (photography)|shutter]] speed values. The green lines are sample program lines, by which a [[digital camera]] automatically selects both the shutter speed and the aperture for given exposure value (brightness of light), when set to [[List of digital camera modes|Program mode (P)]].<sup>[[#CITEREFCanonWWW|Canon]]</sup>]]
 
==Tabulated exposure values==
 
An exposure meter may not always be available, and using a meter to
determine exposure for some scenes with unusual lighting distribution may
be difficult. However, natural light, as well as many scenes with
artificial lighting, is predictable, so that exposure often can be
determined with reasonable accuracy from tabulated values.
 
: '''Table 2. Exposure values (ISO 100 speed) for various lighting conditions'''<ref>
    Exposure values in Table 2 are taken from ANSI exposure
    guides [[#CITEREFANSI PH2.7-1973|PH2.7-1973]] and
    [[#CITEREFANSI PH2.7-1986|PH2.7-1986]]; where the two guides differ, ranges of values have been given or extended.
    The ANSI guides were derived from studies by [[Loyd Ancile Jones]] and H.R. Condit, described in
    [[#CITEREFJonesCondit1941|Jones and Condit (1941)]],
    [[#CITEREFJonesCondit1948|Jones and Condit (1948)]], and
    [[#CITEREFJonesCondit1949|Jones and Condit (1949)]].</ref>
:{| class="wikitable" style="padding: 0.1em 0.5em; text-align: left"
|-
! Lighting Condition || EV<sub>100</sub>
|-
! colspan="2" | Daylight
|-
|  | Light sand or snow in full or slightly hazy sunlight (distinct shadows)<sup>a</sup>
| style="text-align: center;" | 16
|-
|  | Typical scene in full or slightly hazy sunlight (distinct shadows)<sup>a, b</sup>
| style="text-align: center;" | 15
|-
|  | Typical scene in  hazy sunlight (soft shadows)
| style="text-align: center;" | 14
|-
|  | Typical scene, cloudy bright (no shadows)
| style="text-align: center;" | 13
|-
|  | Typical scene, heavy overcast
| style="text-align: center;" | 12
|-
|  | Areas in open shade, clear sunlight
| style="text-align: center;" | 12
|-
! colspan="2" | Outdoor, Natural light
|-
| colspan="2"  | Rainbows
|-
| style="padding: 0.1em 1.5em;" | Clear sky background
| style="text-align: center;" | 15
|-
| style="padding: 0.1em 1.5em;" | Cloudy sky background
| style="text-align: center;" | 14
|-
| colspan="2"  | Sunsets and skylines
|-
| style="padding: 0.1em 1.5em;" | Just before sunset
| style="text-align: center;" | 12&ndash;14
|-
| style="padding: 0.1em 1.5em;" | At sunset
| style="text-align: center;" | 12
|-
| style="padding: 0.1em 1.5em;" | Just after sunset
| style="text-align: center;" | 9&ndash;11
|-
| colspan="2"  | The Moon,<sup>c</sup> [[altitude (astronomy)|altitude]] > 40°
|-
| style="padding: 0.1em 1.5em;" | Full
| style="text-align: center;" | 15
|-
| style="padding: 0.1em 1.5em;" | Gibbous
| style="text-align: center;" | 14
|-
| style="padding: 0.1em 1.5em;" | Quarter
| style="text-align: center;" | 13
|-
| style="padding: 0.1em 1.5em;" | Crescent
| style="text-align: center;" | 12
|-
| colspan="2"  | Moonlight, Moon altitude > 40°
|-
| style="padding: 0.1em 1.5em;" | Full
| style="text-align: center;" | &minus;3 to &minus;2
|-
| style="padding: 0.1em 1.5em;" | Gibbous
| style="text-align: center;" | &minus;4
|-
| style="padding: 0.1em 1.5em;" | Quarter
| style="text-align: center;" | &minus;6
|-
| colspan="2"  | Aurora borealis and australis
|-
| style="padding: 0.1em 1.5em;" | Bright
| style="text-align: center;" | &minus;4 to &minus;3
|-
| style="padding: 0.1em 1.5em;" | Medium
| style="text-align: center;" | &minus;6 to &minus;5
|-
|  | Milky Way galactic center
| style="text-align: center;" | &minus;11 to &minus;9
|-
! colspan="2" | Outdoor, Artificial Light
|-
|  | Neon and other bright signs
| style="text-align: center;" | 9&ndash;10
|-
|  | Night sports
| style="text-align: center;" | 9
|-
|  | Fires and burning buildings
| style="text-align: center;" | 9
|-
|  | Bright street scenes
| style="text-align: center;" | 8
|-
|  | Night street scenes and window displays
| style="text-align: center;" | 7&ndash;8
|-
|  | Night vehicle traffic
| style="text-align: center;" | 5
|-
|  | Fairs and amusement parks
| style="text-align: center;" | 7
|-
|  | Christmas tree lights
| style="text-align: center;" | 4&ndash;5
|-
|  | Floodlit buildings, monuments, and fountains
| style="text-align: center;" | 3&ndash;5
|-
|  | Distant views of lighted buildings
| style="text-align: center;" | 2
|-
! colspan="2" | Indoor, Artificial Light
|-
|  | Galleries
| style="text-align: center;" | 8&ndash;11
|-
|  | Sports events, stage shows, and the like
| style="text-align: center;" | 8&ndash;9
|-
|  | Circuses, floodlit
| style="text-align: center;" | 8
|-
|  | Ice shows, floodlit
| style="text-align: center;" | 9
|-
|  | Offices and work areas
| style="text-align: center;" | 7&ndash;8
|-
|  | Home interiors
| style="text-align: center;" | 5&ndash;7
|-
|  | Christmas tree lights
| style="text-align: center;" | 4&ndash;5
|}
 
<ol type="a">
<li>Values for direct sunlight apply between approximately two hours after
    sunrise and two hours before sunset, and assume front lighting. As a
    rough general rule, decrease EV by 1 for side lighting, and decrease EV
    by 2 for back lighting</li>
<li>This is approximately the value given by the [[sunny 16]] rule.</li>
<li>These values are appropriate for pictures of the Moon taken at night
    with a long lens or telescope, and will render the Moon as a medium
    tone. They will not, in general, be suitable for landscape pictures
    that include the Moon. In a landscape photograph, the Moon typically
    is near the horizon, where its luminance changes considerably with
    [[altitude (astronomy)|altitude]]. Moreover, a landscape photograph
    usually must take account of the sky and foreground as well as the
    Moon. Consequently, it is nearly impossible to give a single correct
    exposure value for such a situation.</li>
</ol>
 
Exposure values in Table 2 are reasonable general guidelines, but they
should be used with caution. For simplicity, they are rounded to the
nearest integer, and they omit numerous considerations described in the
ANSI exposure guides from which they are derived. Moreover, they take no
account of color shifts or [[reciprocity (photography)|reciprocity]]
failure. Proper use of tabulated exposure values is explained in detail in
the ANSI exposure guide, [[#CITEREFANSI PH2.7-1986|ANSI PH2.7-1986]].
 
The exposure values in Table 2 are for ISO 100 speed
("EV<sub>100</sub>"). For a different ISO speed <math>S</math>,
increase the exposure values (decrease the exposures) by the number of exposure steps by which that speed is greater than
ISO 100, formally
 
:<math>\mathrm{EV}_{S} = \mathrm{EV}_{100} + \log_2 \frac {S} {100} \,.</math>
 
For example, ISO 400 speed is two steps greater than ISO 100:
 
:<math>\mathrm{EV}_{400} = \mathrm{EV}_{100} + \log_2 \frac {400} {100}
= \mathrm{EV}_{100} + 2 \,.</math>
 
To photograph outdoor night sports with an ISO 400&ndash;speed imaging medium, search Table 2 for "Night sports" (which has an EV of 9 for ISO 100), and add 2 to get
{{nowrap|1=EV<sub>400</sub>&nbsp;=&nbsp;11}}.
 
For lower ISO speed, decrease the exposure values (increase the exposures) by the number of exposure steps by which the speed is less than ISO 100. For example, ISO 50 speed is one step less than ISO 100:
 
:<math>\mathrm{EV}_{50} = \mathrm{EV}_{100} + \log_2 \frac {50} {100}
= \mathrm{EV}_{100} - 1 \,.</math>
 
To photograph a rainbow against a cloudy sky with an ISO 50&ndash;speed imaging
medium, search Table 2 for "Rainbows-Cloudy sky background" (which has an EV of 14), and subtract 1 to get
{{nowrap|1=EV<sub>50</sub>&nbsp;=&nbsp;13}}.
 
The equation for correcting for ISO speed is sometimes shown with a minus sign, and an online calculator implements that version at dpreview.com.<ref name=dpreview>[http://www.dpreview.com/glossary/exposure/exposure Exposure at dpreview.com]</ref>  In that case, the value being calculated is an EV<sub>100</sub> or light value (LV),<ref name=dpreview/> a represenation of light meter reading or light level appropriate to the camera EV setting at the given speed:
 
:<math>\mathrm{EV}_{100} = \mathrm{EV}_{S} - \log_2 \frac {S} {100} \,.</math>
 
For example, setting the camera for EV 11 and using ISO 400 films allows shooting night sports at a light level of EV<sub>100</sub> = 9, in agreement with the example done the other way around above.
 
==Setting EV on a camera==
[[File:Kodak Pony II Camera.jpg|left|thumb|A Kodak Pony II camera with exposure value setting ring]]
On most cameras, there is no direct way to transfer an EV to camera settings; however, a few cameras, such as some [[Voigtländer]] and [[Carl Braun Camera-Werk|Braun]] models or the [[Kodak]] Pony II shown in the photo, allowed direct setting of exposure value.
[[File:Hasselblad with Planar 80mm at EV 12.jpg|right|thumb|Hasselblad Planar 80mm with EVS set at EV 12]]
Some medium-format cameras from [[Rollei]] ([[Rolleiflex]], [[Rolleicord]] models) and [[Hasselblad]] allowed EV to be set on the lenses. The set EV could be locked, coupling shutter and aperture settings, such that adjusting either the [[shutter speed]] or [[aperture]] made a corresponding adjustment in the other to maintain a constant exposure. On some lenses the locking was optional, so that the photographer could choose the preferred method of working depending on the situation. Use of the EV scale on Hasselblad cameras is discussed briefly by [[#CITEREFAdams1981|Adams (1981)]], 39).
 
==Exposure compensation in EV==
 
Many current cameras allow for [[exposure compensation]], and usually state it in terms of EV ([[#CITEREFRay2000|Ray 2000]], 316). In this context, EV refers to the ''difference'' between the indicated and set exposures. For example, an [[exposure compensation]] of +1&nbsp;EV
(or +1&nbsp;step) means to increase exposure, by using either a longer exposure time or a smaller <math>f</math>-number.
 
The sense of exposure compensation is opposite that of the EV scale itself.
An ''increase'' in exposure corresponds to a ''decrease'' in EV, so an exposure compensation of
+1&nbsp;EV results in a smaller EV;
conversely, an exposure compensation of −1&nbsp;EV results in a greater EV. For example, if a meter
reading of a lighter-than-normal subject indicates EV&nbsp;16, and an exposure compensation of +1&nbsp;EV
is applied to render the subject appropriately, the final camera settings will correspond to EV&nbsp;15.
 
==Meter indication in EV==
 
Some [[light meter]]s (e.g., Pentax [[spot meter]]s) indicate directly in
EV at ISO 100. Some other meters, especially digital models, can indicate
EV for the selected ISO speed. In most cases, this difference is
irrelevant; with the Pentax meters, camera settings usually are determined
using the exposure calculator, and most digital meters directly display
shutter speeds and <math>f</math>-numbers.
 
Recently, articles on many web sites have used ''[[light value]]'' (LV) to
denote EV at ISO 100. However, this term does not derive from a standards
body, and has had several conflicting definitions.
 
==Relationship of EV to lighting conditions==
 
The recommended <var>f</var>-number and exposure time for given lighting conditions
and ISO speed are given  by the exposure equation
 
:<math>
\frac {N^2} {t} = \frac {L \cdot S} {K} \,,
</math>
 
where<ref>
Symbols for the quantities in the exposure equation have varied over time;
the symbols used in this article reflect current practice for many authors,
such as [[#CITEREFRay2000|Ray (2000)]].
</ref>
 
* ''N'' is the relative [[aperture]] ([[f-number]])
* ''t'' is the exposure time (“[[shutter speed]]”) in seconds<ref name="no_units">
In a mathematical expression involving physical quantities, it is common practice to require that the argument to a [[transcendental function]] (such as the [[logarithm]]) be [[dimensionless]]. The definition of EV ignores the units in the denominator and uses only the [[ISO 31-0#Quantities and units|numerical value]] of the exposure time in seconds; EV is not the expression of a physical law, but simply a number for encoding combinations of camera settings.
</ref>
* ''L'' is the average scene [[luminance]]
* ''S'' is the ISO arithmetic [[film speed|speed]]
* ''K'' is the reflected-light [[Light meter#Calibration constants|meter calibration constant]]
 
Applied to the right-hand side of the exposure equation, exposure value is
 
:<math>\mathrm {EV} = \log_2 {\frac {L \cdot S} {K} } \,.</math>
 
Camera settings also can be determined from incident-light measurements,
for which the exposure equation is
 
:<math>
\frac {N^2} {t} = \frac {E \cdot S} {C} \,,
</math>
 
where
 
* ''E'' is the [[illuminance]]
* ''C'' is the incident-light meter calibration constant
 
In terms of exposure value, the right-hand side becomes
 
:<math>\mathrm {EV} = \log_2 {\frac {E \cdot S} {C} } \,.</math>
 
When applied to the left-hand side of the exposure equation, EV denotes
actual combinations of camera settings; when applied to the right-hand
side, EV denotes combinations of camera settings required to give the
nominally “correct” exposure. The formal relationship of EV to
luminance or illuminance has limitations. Although it usually works well
for typical outdoor scenes in daylight, it is less applicable to scenes
with highly atypical luminance distributions, such as city skylines at
night. In such situations, the EV that will result in the best picture
often is better determined by subjective evaluation of photographs than by formal consideration of luminance or illuminance.
 
For a given luminance and film speed, a greater EV results in
less exposure, and for fixed exposure (i.e., fixed camera settings),
a greater EV corresponds to greater luminance or illuminance.
 
==EV and APEX==
 
{{Main|APEX system}}
 
The ''Additive system of Photographic EXposure'' ([[APEX system|APEX]])
proposed in the 1960 [[American Standards Association|ASA]] standard
for monochrome film speed, [[#CITEREFASA PH2.5-1960|ASA PH2.5-1960]],
extended the concept of exposure value to all quantities in the
exposure equation by taking base-2 logarithms, reducing application of the
equation to simple addition and subtraction. In terms of exposure value,
the left-hand side of the exposure equation became
 
:<math>E_v = A_v + T_v \,,</math>
 
where <var>A<sub>v</sub></var> (aperture value) and <var>T<sub>v</sub></var> (time value) were defined as:
 
:<math>A_v = \log_2</math> <math>A^2</math>
 
and
 
:<math>T_v = \log_2</math> <math>(1/T) \,,</math>
 
with
 
* <var>A</var> the relative aperture (f-number)
* <var>T</var> the exposure time (“shutter speed”) in seconds<ref name="no_units"/>
 
<var>A<sub>v</sub></var> and <var>T<sub>v</sub></var> represent the numbers of stops from {{F/}}1 and 1 second, respectively.
 
Use of APEX required logarithmic markings on aperture and shutter controls,
however, and these never were incorporated in consumer cameras. With the
inclusion of built-in exposure meters in most cameras shortly after APEX
was proposed, the need to use the exposure equation was eliminated, and
APEX saw little actual use.
 
Though it remains of little interest to the end user, APEX has seen a partial resurrection in the [[Exif]] standard, which calls for storing exposure data using APEX values. See [[APEX_system#Use_of_APEX_values_in_Exif|Use of APEX values in Exif]] for additional discussion.
 
==EV as a measure of luminance and illuminance==
 
For a given ISO speed and meter calibration constant, there is a direct relationship
between exposure value and luminance (or illuminance). Strictly, EV is not a measure of
luminance or illuminance; rather, an EV
corresponds to a luminance (or illuminance) for which a camera with a given
ISO speed would use the indicated EV to obtain the nominally correct
exposure. Nonetheless, it is common practice among photographic equipment
manufacturers to express luminance in EV for ISO 100 speed, as when
specifying metering range ([[#CITEREFRay2000|Ray 2000]], 318) or autofocus sensitivity. And the practice is
long established;
[[#CITEREFRay2002|Ray (2002)]], 592) cites [[#CITEREFUlffers1968|Ulffers (1968)]]
as an early example. Properly, the meter calibration constant as well as the
ISO speed should be stated, but this seldom is done.
 
Values for the reflected-light calibration constant <var>K</var> vary slightly among manufacturers; a common choice is 12.5 ([[Canon Inc.|Canon]], [[Nikon]], and [[Mamiya|Sekonic]]<ref>Specifications for Sekonic light meters are available on the [http://www.sekonic.com/ Sekonic] web site under "Products".</ref>).
Using {{nowrap|1=<var>K</var> = 12.5}}, the relationship between EV at ISO 100 and luminance <var>L</var> is then
 
:<math>L = 2^{\mathrm {EV} - 3} \,.</math>
 
Values of luminance at various values of EV based on this relationship are
shown in Table 3. Using this relationship, a reflected-light exposure meter
that indicates in EV can be used to determine luminance.
 
As with luminance, common practice among photographic
equipment manufacturers is to express illuminance in EV for ISO 100 speed
when specifying metering range.<ref>The metering range for an
incident-light meter specified in EV at ISO 100 usually applies to a
hemispherical sensor, so strictly speaking, it does not directly relate to
illuminance.</ref>
 
The situation with incident-light meters is more
complicated than that for reflected-light meters, because the calibration
constant <var>C</var> depends on the sensor type. Two sensor types are common: flat
([[cosine]]-responding) and hemispherical ([[cardioid]]-responding).
Illuminance is measured with a flat sensor; a typical value for
<var>C</var> is 250 with illuminance in [[lux]]. Using {{nowrap|1=<var>C</var> = 250}},
the relationship between EV at ISO 100 and illuminance <var>E</var> is then
 
:<math>E = 2.5 \times 2^{\mathrm {EV}} \,.</math>
 
Values of illuminance at various values of EV based on this relationship are
shown in Table 3. Using this relationship, an incident-light exposure meter
that indicates in EV can be used to determine illuminance.
 
Although illuminance measurements may indicate appropriate exposure for a
flat subject, they are less useful for a typical scene in which many
elements are not flat and are at various orientations to the camera. For
determining practical photographic exposure, a hemispherical sensor has
proven more effective. With a hemispherical sensor, typical values for
<var>C</var> are between 320 (Minolta) and 340 (Sekonic) with illuminance
in lux. If illuminance is interpreted loosely, measurements with a
hemispherical sensor indicate “scene illuminance”.
 
[[Light meter#Exposure meter calibration|Exposure meter calibration]] is
discussed in detail in the [[Light meter]] article.
 
: '''Table 3. Exposure value vs. luminance (ISO 100, <var>K</var> = 12.5) and illuminance (ISO 100, <var>C</var> = 250)'''
:{| class="wikitable" style="text-align: center"
|-
! rowspan="2" | &nbsp; EV<sub>100</sub> &nbsp;
! colspan="2" | &nbsp; Luminance
! colspan="2" | &nbsp; Illuminance
|-
! &nbsp; [[Candela per square metre|cd/m<sup>2</sup>]] &nbsp;
! &nbsp; [[Footlambert|fL]] &nbsp;
! &nbsp; [[Lux|lx]] &nbsp;
! &nbsp; [[Foot-candle|fc]] &nbsp;
|-
| style="text-align: right; padding: 0.1em  0.5em;" |  &minus;4 ||    0.008 ||    0.0023 || 0.156 ||  0.015
|-
| style="text-align: right; padding: 0.1em  0.5em;" |  &minus;3 ||    0.016 ||    0.0046 || 0.313 ||  0.029
|-
| style="text-align: right; padding: 0.1em  0.5em;" |  &minus;2 ||    0.031 ||    0.0091 || 0.625 ||  0.058
|-
| style="text-align: right; padding: 0.1em  0.5em;" |  &minus;1 ||    0.063 ||    0.018  || 1.25  ||  0.116
|-
| style="text-align: right; padding: 0.1em  0.5em;" |  0 ||    0.125 ||    0.036 ||      2.5 ||    0.232
|-
| style="text-align: right; padding: 0.1em  0.5em;" |  1 ||    0.25  ||    0.073 ||      5  ||    0.465
|-
| style="text-align: right; padding: 0.1em  0.5em;" |  2 ||    0.5  ||    0.146 ||      10  ||    0.929
|-
| style="text-align: right; padding: 0.1em  0.5em;" |  3 ||    1    ||    0.292 ||      20  ||    1.86
|-
| style="text-align: right; padding: 0.1em  0.5em;" |  4 ||    2    ||    0.584 ||      40  ||    3.72
|-
| style="text-align: right; padding: 0.1em  0.5em;" |  5 ||    4    ||    1.17  ||      80  ||    7.43
|-
| style="text-align: right; padding: 0.1em  0.5em;" |  6 ||    8    ||    2.33  ||    160  ||    14.9
|-
| style="text-align: right; padding: 0.1em  0.5em;" |  7 ||  16    ||    4.67  ||    320  ||    29.7
|-
| style="text-align: right; padding: 0.1em  0.5em;" |  8 ||  32    ||    9.34  ||    640  ||    59.5
|-
| style="text-align: right; padding: 0.1em  0.5em;" |  9 ||  64    ||  18.7  ||    1280  ||  119
|-
| style="text-align: right; padding: 0.1em  0.5em;" | 10 ||  128    ||  37.4  ||    2560  ||  238
|-
| style="text-align: right; padding: 0.1em  0.5em;" | 11 ||  256    ||  74.7  ||    5120  ||  476
|-
| style="text-align: right; padding: 0.1em  0.5em;" | 12 ||  512    ||  149    ||  10,240  ||  951
|-
| style="text-align: right; padding: 0.1em  0.5em;" | 13 || 1024    ||  299    ||  20,480  ||  1903
|-
| style="text-align: right; padding: 0.1em  0.5em;" | 14 || 2048    ||  598    ||  40,960  ||  3805
|-
| style="text-align: right; padding: 0.1em  0.5em;" | 15 || 4096    || 1195    ||  81,920  ||  7611
|-
| style="text-align: right; padding: 0.1em  0.5em;" | 16 || 8192    || 2391    || 163,840  || 15,221
|}
 
==Notes==
 
<references />
 
==See also==
{{Portal|Photography}}
 
* [[APEX system]]
* [[Exposure compensation]]
* [[Light meter#Exposure meter calibration|Exposure meter calibration]]
* [[High dynamic range imaging]]
 
==References==
 
* <cite id="CITEREFAdams1981">Adams, Ansel. 1981. ''The Negative.'' Boston: New York Graphic Society.</cite> ISBN 0-8212-1131-5
* <cite id="CITEREFANSI PH2.7-1973">ANSI PH2.7-1973. ''American National Standard Photographic Exposure Guide''. New York: American National Standards Institute.</cite> Superseded by ANSI PH2.7-1986
* <cite id="CITEREFANSI PH2.7-1986">ANSI PH2.7-1986. ''American National Standard for Photography &mdash; Photographic Exposure Guide''. New York: American National Standards Institute.</cite>
* <cite id="CITEREFASA PH2.5-1960">ASA PH2.5-1960. ''American Standard Method for Determining Speed of photographic Negative Materials (Monochrome, Continuous Tone)''. New York: United States of America Standards Institute.</cite>
* <cite id="CITEREFASA PH2.15-1964">ASA PH2.15-1964 (R1976). American Standard: Automatic Exposure Controls for Cameras. New York: United States of America Standards Institute.</cite>
* <cite id="CITEREFCanonWWW">{{cite web |url = http://cpn.canon-europe.com/content/education/infobank/camera_settings/shooting_modes.do |title = Canon Professional Network – Shooting modes |accessdate= 23 July 2013}}</cite>
* <cite id="CITEREFDavis1999">Davis, Phil. 1999. '' [http://books.elsevier.com/us/focalbooks/us/subindex.asp?isbn=0240803434 Beyond the Zone System]'', 4th ed. Boston: Focal Press.</cite>  ISBN 0-240-80343-4
* <cite id="CITEREFJonesCondit1941">[[Loyd Ancile Jones|Jones, Loyd Ancile]], and H. R. Condit. 1941. The Brightness Scale of Exterior Scenes and the Computation of Correct Photographic Exposure. ''Journal of the Optical Society of America'' 31:11, Nov. 1941, 651&ndash;678.</cite>
* <cite id="CITEREFJonesCondit1948">[[Loyd Ancile Jones|Jones, Loyd Ancile]], and H. R. Condit. 1948. Sunlight and skylight as determinants of Photographic exposure. I. Luminous density as determined by solar altitude and atmospheric conditions. ''Journal of the Optical Society of America'' 38:2, Feb. 1948, 123&ndash;178.</cite>
* <cite id="CITEREFJonesCondit1949">[[Loyd Ancile Jones|Jones, Loyd Ancile]], and H. R. Condit. 1949. Sunlight and skylight as determinants of Photographic exposure. II. Scene structure, directional index, photographic efficiency of daylight, safety factors, and evaluation of camera exposure. ''Journal of the Optical Society of America'' 39:2, Feb. 1949, 94&ndash;135.</cite>
* <cite id="CITEREFRay2000">Ray, Sidney F. 2000. Camera Exposure Determination. In ''The Manual of Photography: Photographic and Digital Imaging'', 9th ed. Ed. Ralph E. Jacobson, Sidney F. Ray, Geoffrey G. Atteridge, and Norman R. Axford. Oxford: Focal Press.</cite> ISBN 0-240-51574-9
* <cite id="CITEREFRay2002">Ray, Sidney F. 2002. [http://books.elsevier.com/us/focalbooks/us/subindex.asp?isbn=0240515404 ''Applied Photographic Optics'']. 3rd ed. Oxford: Focal Press.</cite> ISBN 0-240-51540-4
* <cite id="CITEREFUlffers1968">Ulffers, D. 1968. Sensitivity Specifications of Exposure Meters. ''British Journal of Photography'' 115, 47.
 
==Further reading==
 
* Eastman Kodak Company. ''Existing-Light Photography'', 3rd ed. Rochester, NY: Silver Pixel Press, 1996. ISBN 0-87985-744-7
 
==External links==
 
* Doug Kerr’s [http://doug.kerr.home.att.net/pumpkin/APEX.pdf The Additive System for Photographic Exposure] ([[PDF]])
* Fred Parker’s [http://www.fredparker.com/ultexp1.htm#Light%20Intensity%20Chart table of exposure values] for various lighting situations
 
{{Photography}}
[[Category:Science of photography]]
[[Category:Photometry]]
[[Category:Units of illuminance]]

Latest revision as of 04:27, 19 November 2014

Some users of computer are aware that their computer become slower or have certain mistakes following using for a while. But most persons don't know how to accelerate their computer and some of them don't dare to operate it. They always find several experts to keep the computer inside advantageous condition however, they have to spend several cash on it. Actually, you are able to do it by oneself. There are numerous registry cleaner software which there are 1 of them online. Some of them are free plus you only should download them. After installing it, this registry cleaner software usually scan the registry. If it found these errors, it usually report you and you can delete them to keep a registry clean. It is easy to operate and it is very the best technique to repair registry.

If it's not as big of the issue as you think it is, it may possibly be resolved conveniently by running a Startup Repair or by System Restore Utility. Again it can be as effortless because running an anti-virus check or cleaning the registry.

H/w connected error handling - whenever hardware causes BSOD installing latest fixes for the hardware and/ or motherboard could enable. You can also add brand-new hardware that is compatible with the program.

Your computer was especially fast when we first purchased it. Because a registry was rather clean plus free of mistakes. After time, the computer starts to run slow plus freezes up now and then. Because there are errors accumulating inside it plus several information is rewritten or even completely deleted by your wrong uninstall of programs, wrong operations, malware or alternative things. That is the reason why a computer performance decreases slowly plus become surprisingly unstable.

The registry mechanic must come as standard with a back up and restore facility. This should be an convenient to apply task.That signifies which if you encounter a problem with a PC after using a registry cleaning you can merely restore the settings.

Active X controls are used across the whole spectrum of computer and web technologies. These controls are referred to as the building blocks of the web and as the glue which puts it all together. It is a standard which is employed by all programmers to create the web more helpful plus interactive. Without these control practices there would basically be no public web.

The reason why this really is significant, is because most 'dumb' registry products really delete these files without even recognizing. They simply browse through a registry and try and find the many difficulties possible. They then delete any files they see fit, and because they are 'dumb', they don't really care. This means that if they delete a few of these vital program files, they are actually going to result a LOT more harm than good.

There is a lot a superior registry cleaner will do for your computer. It could check for and download updates for Windows, Java and Adobe. Keeping changes present is an significant part of advantageous computer wellness. It can moreover safeguard your personal plus business confidentiality too as the online protection.