Cartan connection: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
the structure equation may only be written \eta\wedge\eta if the group is represented (and in this case, there is no 1/2 coefficient). For an abstract lie group, the lie algebra bracket is used.
en>BD2412
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
In [[mathematics]], the '''Henstock–Kurzweil integral''' (also known as the (narrow) '''Denjoy integral''' (pronounced {{IPA-fr|dɑ̃ˈʒwa|}}), '''Luzin integral''' or '''Perron integral''', not to be confused with the more general [[Khinchin integral|wide Denjoy integral]]) is one of a number of definitions of the [[integral]] of a [[function (mathematics)|function]]. It is a generalization of the [[Riemann integral]] which in some situations is more general than the [[Lebesgue integral]].
Gabrielle is what her husband loves to call lady's though she doesn't undoubtedly like being called individuals. As a woman what this lady really likes is mah jongg but she has not made a dime utilizing it. Software acquiring is where her main income comes from but soon her husband but also her will start their personal own business. For a while she's just lately in Massachusetts. Go to her [http://www.google.de/search?q=website website] to pick out more: http://circuspartypanama.com<br><br>[https://Www.Flickr.com/search/?q=Feel+free Feel free] to surf to my webpage: [http://circuspartypanama.com clash of clans hack no survey or password]
 
This integral was first defined by [[Arnaud Denjoy]] (1912). Denjoy was interested in a definition that would allow one to integrate functions like
 
:<math>f(x)=\frac{1}{x}\sin\left(\frac{1}{x^3}\right).</math>
 
This function has a [[singularity (mathematics)|singularity]] at 0, and is not Lebesgue integrable. However, it seems natural to calculate its integral except over the interval  [&minus;ε,δ] and then let ε, δ → 0.
 
Trying to create a general theory Denjoy used [[transfinite induction]] over the possible types of singularities which made the definition quite complicated. Other definitions were given by [[Nikolai Luzin]] (using variations on the notions of [[absolute continuity]]), and by [[Oskar Perron]], who was interested in continuous major and minor functions. It took a while to understand that the Perron and Denjoy integrals are actually identical.
 
Later, in 1957, the Czech mathematician [[Jaroslav Kurzweil]] discovered a new definition of this integral elegantly similar in nature to [[Riemann]]'s original definition which he named the '''gauge integral'''; the theory was developed by [[Ralph Henstock]]. Due to these two important mathematicians, it is now commonly known as the '''Henstock–Kurzweil integral'''. The simplicity of Kurzweil's definition made some educators advocate that this integral should replace the Riemann integral in introductory calculus courses, but this idea has not gained traction.{{cn|date=January 2014}}
 
==Definition==
Henstock's definition is as follows:
 
Given a [[tagged partition]] ''P'' of [''a'', ''b''], say
 
:<math>a = u_0 < u_1 < \cdots < u_n = b, \ \ t_i \in [u_{i-1}, u_i]</math>
 
and a positive function
 
:<math>\delta \colon [a, b] \to (0, \infty),\,</math>
 
which we call a ''gauge'', we say ''P ''is <math>\delta</math>-fine if
 
:<math>\forall i \ \ t_i-\delta(t_i)< u_{i-1} \leq t_i \leq u_i < t_i + \delta (t_i). </math>
 
For a tagged partition ''P'' and a function
 
:<math>f \colon [a, b] \to \mathbb{R}</math>
 
we define the Riemann sum to be
 
:<math> \sum_P f = \sum_{i = 1}^n (u_i - u_{i-1}) f(t_i).</math>
 
Given a function
 
:<math>f \colon [a, b] \to \mathbb{R},</math>
 
we now define a number ''I'' to be the Henstock–Kurzweil integral of ''f'' if for every ε&nbsp;>&nbsp;0 there exists a gauge <math>\delta</math> such that whenever ''P'' is <math>\delta</math>-fine, we have
 
:<math> {\Big \vert} \sum_P f - I {\Big \vert} < \varepsilon. </math>
 
If such an ''I'' exists, we say that ''f'' is Henstock–Kurzweil integrable on [''a'', ''b''].
 
[[Cousin's theorem]] states that for every gauge <math>\delta</math>, such a <math>\delta</math>-fine partition ''P'' does exist, so this condition cannot be satisfied [[vacuous truth|vacuously]]. The Riemann integral can be regarded as the special case where we only allow constant gauges.
 
==Properties==
 
Let {{nowrap|''f'': [''a'', ''b''] → '''R'''}} be any function.
 
If {{nowrap|''a'' < ''c'' < ''b''}}, then ''f'' is Henstock–Kurzweil integrable on [''a'',&nbsp;''b''] if and only if it is Henstock–Kurzweil integrable on both [''a'',&nbsp;''c''] and [''c'',&nbsp;''b''], and then
 
:<math>\int_a^bf(x)\,dx=\int_a^cf(x)\,dx+\int_c^bf(x)\,dx.</math>
 
The Henstock–Kurzweil integral is linear, i.e., if ''f'' and ''g'' are integrable, and α, β are reals, then α''f'' + β''g'' is integrable and
 
:<math>\int_a^b\alpha f(x)+\beta g(x)\,dx=\alpha\int_a^bf(x)\,dx+\beta\int_a^bg(x)\,dx.</math>
 
If ''f'' is Riemann or Lebesgue integrable, then it is also Henstock–Kurzweil integrable, and the values of the integrals are the same. The important [[Hake's theorem]] states that
 
:<math>\int_a^bf(x)\,dx=\lim_{c\to b^-}\int_a^cf(x)\,dx</math>
 
whenever either side of the equation exists, and symmetrically for the lower integration bound. This means that if ''f'' is "[[improper integral|improperly]] Henstock–Kurzweil integrable", then it is properly Henstock–Kurzweil integrable; in particular, improper Riemann or Lebesgue integrals such as
 
:<math>\int_0^1\frac{\sin(1/x)}x\,dx</math>
 
are also Henstock–Kurzweil integrals. This shows that there is no sense in studying an "improper Henstock–Kurzweil integral" with finite bounds. However, it makes sense to consider improper Henstock–Kurzweil integrals with infinite bounds such as
 
:<math>\int_a^{\infty} f(x)\,dx := \lim_{b\to\infty}\int_a^bf(x)\,dx.</math>
 
For many types of functions the Henstock–Kurzweil integral is no more general than Lebesgue integral. For example, if ''f'' is bounded with compact support, the following are equivalent:
*''f'' is Henstock–Kurzweil integrable,
*''f'' is Lebesgue integrable,
*''f'' is [[measurable function|Lebesgue measurable]].
In general, every Henstock–Kurzweil integrable function is measurable, and ''f'' is Lebesgue integrable if and only if both ''f'' and |''f''| are Henstock–Kurzweil integrable. This means that the Henstock–Kurzweil integral can be thought of as a "[[absolute convergence|non-absolutely convergent]] version of Lebesgue integral". It also implies that the Henstock–Kurzweil integral satisfies appropriate versions of the [[monotone convergence theorem#Lebesgue monotone convergence theorem|monotone convergence theorem]] (without requiring the functions to be nonnegative) and [[dominated convergence theorem]] (where the condition of dominance is loosened to ''g''(''x'') ≤ ''f<sub>n</sub>''(''x'') ≤ ''h''(''x'') for some integrable ''g'', ''h'').
 
If ''F'' is differentiable everywhere (or with countable many exceptions), the derivative ''F''&prime; is Henstock–Kurzweil integrable, and its indefinite Henstock–Kurzweil integral is ''F''.  (Note that ''F''&prime; need not be Lebesgue integrable.) In other words, we obtain a simpler and more satisfactory version of the [[second fundamental theorem of calculus]]: each differentiable function is, up to a constant, the integral of its derivative:
 
: <math>F(x) - F(a) = \int_a^x F'(t) \,dt.</math>
 
Conversely, the [[Lebesgue differentiation theorem]] continues to holds for the Henstock–Kurzweil integral: if ''f'' is Henstock–Kurzweil integrable on [''a'',&nbsp;''b''], and
 
:<math>F(x)=\int_a^xf(t)\,dt,</math>
 
then ''F''&prime;(''x'') = ''f''(''x'') almost everywhere in [''a'',&nbsp;''b''] (in particular, ''F'' is almost everywhere differentiable).
 
The space of all Henstock&ndash;Kurzweil-integrable functions is often endowed with the [[Alexiewicz norm]], with respect to which it is [[barrelled space|barrelled]] but [[complete space|incomplete]].
 
==McShane integral==
Interestingly, [[Lebesgue integral]] on a line can also be presented in a similar fashion.
 
First of all, change of
 
:<math>\forall i \ \ u_i - u_{i-1} < \delta (t_i)</math>
 
to
 
:<math>\forall i \ \ [u_{i-1},u_i]\subset U_{\delta (t_i)}(t_i)</math>
 
(here <math>U_{\varepsilon}(a)</math> is a <math>\varepsilon</math>-neighbourhood of ''a'') in the notion of <math>\delta</math>-fine partition yields a definition of the Henstock–Kurzweil integral equivalent to the one given above. But after this change we can drop condition
 
:<math>t_i \in [u_{i-1}, u_i]</math>
 
and get a definition of ''McShane integral'', which is equivalent to the Lebesgue integral.
 
==References==
* {{cite book | first = Robert G. |last= Bartle | author-link=Robert G. Bartle| title = A Modern Theory of Integration | series = Graduate Studies in Mathematics |volume = 32 |publisher=American Mathematical Society | year=2001 | isbn=978-0-8218-0845-0}}
* {{cite book | first1 = Robert G. |last1 = Bartle | author-link=Robert G. Bartle| first2= Donald R. |last2= Sherbert|title = Introduction to Real Analysis |publisher=Wiley |edition=3rd| year=1999 | isbn=978-0-471-32148-4}} 
* {{cite book | first1=V G |last1=Čelidze |first2= A G |last2= Džvaršeǐšvili|title= The Theory of the Denjoy Integral and Some Applications | series= Series in Real Analysis | volume=3| publisher=World Scientific Publishing Company | year = 1989 |isbn=978-981-02-0021-3}}
* {{cite book |first1= A.G. |last = Das|title=The Riemann, Lebesgue, and Generalized Riemann Integrals |publisher=Narosa Publishers |year=2008 |isbn = 978-81-7319-933-2 }}
* {{cite book | last=Gordon | first=Russell A. | title=The integrals of Lebesgue, Denjoy, Perron, and Henstock | series=Graduate Studies in Mathematics | volume=4  | publisher=American Mathematical Society | location=Providence, RI | year=1994 | isbn=978-0-8218-3805-1 }}
* {{cite book | first=Ralph|last=Henstock| author-link=Ralph Henstock | title=Lectures on the Theory of Integration|series = Series in Real Analysis | volume=1| publisher=World Scientific Publishing Company | year=1988|isbn=978-9971-5-0450-2}}
* {{cite book | first = Jaroslav | last= Kurzweil | author-link=Jaroslav Kurzweil | title=Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces |series = Series in Real Analysis | volume=7| publisher=World Scientific Publishing Company | year = 2000 |isbn=978-981-02-4207-7}}
* {{cite book | first = Jaroslav | last= Kurzweil | author-link=Jaroslav Kurzweil | title=Integration Between the Lebesgue Integral and the Henstock-Kurzweil Integral: Its Relation to Locally Convex Vector Spaces|series = Series in Real Analysis | volume=8| publisher=World Scientific Publishing Company | year = 2002 |isbn=978-981-238-046-3}}
* {{cite book |first=Solomon |last=Leader |title = The Kurzweil-Henstock Integral & Its Differentials | series= Pure and Applied Mathematics Series | publisher= CRC | year = 2001 | isbn = 978-0-8247-0535-0 }}
* {{cite book | first=Peng-Yee |last=Lee | title=Lanzhou Lectures on Henstock Integration|series = Series in Real Analysis | volume=2| publisher=World Scientific Publishing Company | year = 1989 |isbn=978-9971-5-0891-3}}
* {{cite book | last1=Lee |first1 = Peng-Yee |last2= Výborný|first2=Rudolf |title = Integral: An Easy Approach after Kurzweil and Henstock |series = Australian Mathematical Society Lecture Series | publisher= Cambridge University Press |year=2000|isbn=978-0-521-77968-5}}
* {{cite book | last=McLeod | first=Robert M. | title=The generalized Riemann integral | series=Carus Mathematical Monographs|volume=20 | publisher=Mathematical Association of America | location=Washington, D.C. | year=1980 | isbn=978-0-88385-021-3 }}
* {{cite book | last=Swartz | first=Charles W. |title=Introduction to Gauge Integrals | publisher= World Scientific Publishing Company |year=2001 | isbn=978-981-02-4239-8 }}
* {{cite book | first1= Charles W. |last1= Swartz| first2 =Douglas S. | last2=Kurtz |title= Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and McShane|series= Series in Real Analysis |volume=9| publisher= World Scientific Publishing Company | year = 2004 |isbn = 978-981-256-611-9 }}
 
==External links==
The following are additional resources on the web for learning more:
* {{springer|title=Kurzweil-Henstock integral|id=p/k110200}}
* http://www.math.vanderbilt.edu/~schectex/ccc/gauge/
* http://www.math.vanderbilt.edu/~schectex/ccc/gauge/letter/
* http://mathdl.maa.org/mathDL/22/?pa=content&sa=viewDocument&nodeId=2900
 
{{integral}}
 
{{DEFAULTSORT:Henstock-Kurzweil integral}}
[[Category:Definitions of mathematical integration]]

Latest revision as of 17:59, 18 June 2014

Gabrielle is what her husband loves to call lady's though she doesn't undoubtedly like being called individuals. As a woman what this lady really likes is mah jongg but she has not made a dime utilizing it. Software acquiring is where her main income comes from but soon her husband but also her will start their personal own business. For a while she's just lately in Massachusetts. Go to her website to pick out more: http://circuspartypanama.com

Feel free to surf to my webpage: clash of clans hack no survey or password