Root test: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
In mathematical [[optimization (mathematics)|optimization theory]], the '''linear complementarity problem (LCP)''' arises frequently in [[computational mechanics]] and encompasses the well-known [[quadratic programming]] as a special case.  It was proposed by Cottle and [[George Dantzig|Dantzig]] {{nowrap|in&nbsp;1968.<ref name="Murty88"/><ref name="CPS92"/><ref>R. W. Cottle and [[G. B. Dantzig]]. Complementary pivot theory of mathematical programming. ''Linear Algebra and its Applications'', 1:103-125, 1968.</ref>}}
<br><br>Another day I woke up and noticed - I have also been single for a while today and after much intimidation from buddies I today locate myself  [http://www.hotelsedinburgh.org on tour with luke bryan] signed up for on line dating. They assured me that there are plenty of pleasant, standard and interesting individuals to meet up, therefore here goes  [http://www.banburycrossonline.com Luke bryan tours 2014] the message!<br>My fam and   [http://lukebryantickets.neodga.com luke bryan my kinda night tour] buddies are magnificent and spending some time with them at tavern gigs or dinners is always critical. As I discover you could never have a good dialogue with all the sound I haven't ever been into cabarets. In addition, I got 2 undoubtedly cheeky and quite cunning puppies that are [http://Www.Google.com/search?q=consistently+eager&btnI=lucky consistently eager] to meet up fresh folks.<br>I endeavor to maintain as physically fit as potential staying at the gymnasium many times weekly. [http://www.bing.com/search?q=I+enjoy&form=MSNNWS&mkt=en-us&pq=I+enjoy I enjoy] my sports and try to play or see as many a potential. Being wintertime I am going to regularly at Hawthorn suits.   [http://www.museodecarruajes.org luke bryan concert videos] Note: If you will contemplated shopping an activity I do not mind, I've noticed the carnage of wrestling fits at stocktake revenue.<br><br>Feel free to visit my web-site: luke bryan tickets boston ([http://minioasis.com minioasis.com])
 
== Formulation ==
Given a real matrix '''M''' and vector '''q''', the linear complementarity problem seeks vectors '''z''' and '''w''' which satisfy the following constraints:
 
* <math>{w} = {Mz} + {q} \,</math>
* <math>{w} \ge 0, {z} \ge 0\,</math> (that is, each component of these two vectors is non-negative)
* <math>{w}_i {z}_i = 0\,</math> for all i.  (The [[Complementarity theory|complementarity]] condition)
 
A sufficient condition for existence and uniqueness of a solution to this problem is that '''M''' be [[Symmetric matrix|symmetric]] [[Positive-definite matrix|positive-definite]].
 
The vector <math>{w}\,</math> is a [[slack variable]], and so is generally discarded after <math>{z}\,</math> is found.{{Citation needed|date=March 2012}} As such, the problem can also be formulated as:
 
* <math>{Mz}+{q} \ge {0}\,</math>
* <math>{z} \ge {0}\,</math>
* <math>{z}^{\mathrm{T}}({Mz}+{q}) = 0\,</math> (the complementarity condition)
 
==Convex quadratic-minimization: Minimum conditions==
 
Finding a solution to the linear complementarity problem is associated with minimizing the quadratic function
 
: <math>f({z}) = {z}^{\mathrm{T}}({Mz}+{q})\,</math>
 
subject to the constraints
 
: <math>{Mz}+{q} \ge {0}\,</math>
: <math>{z} \ge {0}\,</math>
 
These constraints ensure that ''f'' is always non-negative. The minimum of ''f'' is 0 at '''z''' if and only if '''z''' solves the linear complementarity problem.
 
If '''M''' is [[Positive-definite matrix|positive definite]], any algorithm for solving (strictly) convex [[Quadratic programming|QPs]] can solve the LCP. Specially designed basis-exchange pivoting algorithms, such as [[Lemke's algorithm]] and a variant of the [[simplex algorithm|simplex algorithm of Dantzig]] have been used for decades. Besides having polynomial time complexity, interior-point methods are also effective in practice.
 
Also, a quadratic-programming problem stated as minimize <math>f({x})={c}^T{x}+\frac{1}{2}{x}^T{Qx}\,</math> subject to <math>{Ax} \geq {b} \,</math> as well as <math>{x} \ge {0}\,</math> with ''Q'' symmetric
 
is the same as solving the LCP with
 
* <math>{q} = \left[\begin{array}{c}{c}\\-{b}\end{array}\right]\,</math>
* <math>{M} = \left[\begin{array}{cc} {Q} & -{A}^{T}\\ {A} & 0\end{array}\right]\,</math>
 
This is because the [[Karush–Kuhn–Tucker]] conditions of the QP problem can be written as:
 
* <math>{v} = {Q} {x} - {A}^{T} {\lambda} + {c}\,</math>
 
* <math>{s} = {A} {x} - {b}\,</math>
 
* <math>{x}, {\lambda}, {v}, {s} \ge {0}\,</math>
 
* <math>{x}^{T}{v} + {\lambda}^{T}{s} = {0}\,</math>
 
...being <math> {v} \,</math> the Lagrange multipliers on the non-negativity constraints,<math> {\lambda} \,</math> the <!-- Lagrange  -->multipliers on the inequality constraints, and <math> {s} \,</math> the slack variables for the inequality constraints. The fourth condition derives from the complementarity of each group of variables (<math>{x}, {s}\,</math>) with its set of KKT vectors (optimal Lagrange multipliers) being (<math>{v}, {\lambda}\,</math>).
 
In that case,
 
: <math>{z} = \left[\begin{array}{c}{x}\\ {\lambda}\end{array}\right]\,</math>
: <math>{w} = \left[\begin{array}{c}{v}\\ {s}\end{array}\right]\,</math>
 
If the non-negativity constraint on the <math>{x}\,</math> is relaxed, the dimensionality of the LCP problem can be reduced to the number of the inequalities, as long as <math>{Q}\,</math> is non-singular (which is guaranteed if it is [[Positive-definite matrix|positive definite]]). The multipliers <math>{v}\,</math> are no longer present, and the first KKT conditions can be rewritten as:
 
* <math>{Q} {x} = {A}^{T} {\lambda} - {c}\,</math>
 
or:
 
: <math> {x} = {Q}^{-1}({A}^{T} {\lambda} - {c})\,</math>
 
pre-multiplying the two sides by <math>{A}\,</math> and subtracting <math>{b}\,</math> we obtain: 
 
: <math> {A} {x} - {b} = {A} {Q}^{-1}({A}^{T} {\lambda} - {c}) -{b} \,</math>
 
The left side, due to the second KKT condition, is <math>{s}\,</math>. Substituting and reordering:
 
: <math> {s} = ({A} {Q}^{-1} {A}^{T}) {\lambda} + (- {A} {Q}^{-1} {c} - {b} )\,</math>
 
Calling now <math> {M} \,\overset{\underset{\mathrm{def}}{}}{=}\, ({A} {Q}^{-1} {A}^{T})\,</math> and <math> {q} \,\overset{\underset{\mathrm{def}}{}}{=}\, (- {A} {Q}^{-1} {c} - {b})\,</math> we have an LCP, due to the relation of complementarity between the slack variables <math>{s}\,</math> and their Lagrange multipliers <math>{\lambda}\,</math>. Once we solve it, we may obtain the value of <math>{x}\,</math> from <math>{\lambda}\,</math> through the first KKT condition.
 
Finally, it is also possible to handle additional equality constraints:
 
: <math>{A}_{eq}{x} = {b}_{eq} \,</math>
 
This introduces a vector of Lagrange multipliers <math>{\mu}\,</math>, with the same dimension as <math>{b}_{eq}\,</math>.
 
It is easy to verify that the <math>{M}\,</math> and <math>{q}\,</math> for the LCP system <math> {s} = {M} {\lambda} + {q} \,</math> are now expressed as:
 
: <math> {M} ~\overset{\underset{\mathrm{def}}{}}{=}~ \left(\left[\begin{array}{cc}{A} & {0}\end{array}\right] \left[\begin{array}{cc} {Q} & {A}_{eq}^{T}\\ -{A}_{eq} & {0}\end{array}\right]^{-1} \left[\begin{array}{cc}{A}^{T} \\ {0}\end{array}\right]\right)\,</math>
 
: <math> {q} ~\overset{\underset{\mathrm{def}}{}}{=}~ \left(- \left[\begin{array}{cc}{A} & {0}\end{array}\right] \left[\begin{array}{cc} {Q} & {A}_{eq}^{T}\\ -{A}_{eq} & {0}\end{array}\right]^{-1} \left[\begin{array}{c}{c}\\ {b}_{eq}\end{array}\right] - {b}\right)\,</math>
 
From <math>{\lambda}\,</math> we can now recover the values of both <math>{x}\,</math> and the Lagrange multiplier of equalities <math>{\mu}\,</math>:
 
<math>\left[\begin{array}{c}{x}\\ {\mu}\end{array}\right] = \left[\begin{array}{cc} {Q} & {A}_{eq}^{T}\\ -{A}_{eq} & {0}\end{array}\right]^{-1}  \left[\begin{array}{c} {A}^{T}{\lambda}-{c}\\-{b}_{eq}\end{array}\right] \,</math>
 
In fact, most QP solvers work on the LCP formulation, including the [[interior point method]], principal / complementarity pivoting, and [[active set]] methods.<ref name="Murty88">{{harvtxt|Murty|1988}}</ref><ref name="CPS92">{{harvtxt|Cottle|Pang|Stone|1992}}</ref> LCP problems can be solved also by the [[criss-cross algorithm]],<ref>{{harvtxt|Fukuda|Namiki|1994}}</ref><ref>{{harvtxt|Fukuda|Terlaky|1997}}</ref><ref name="HRT">{{cite journal|first1=D. |last1=den&nbsp;Hertog|first2=C.|last2=Roos|first3=T.|last3=Terlaky|title=The linear complementarity problem, sufficient matrices, and the criss-cross method|journal=Linear Algebra and its Applications|volume=187|date=1 July 1993|pages=1–14|doi=10.1016/0024-3795(93)90124-7|url=http://www.sciencedirect.com/science/article/pii/0024379593901247|<!-- ref=harv -->|url=http://arno.uvt.nl/show.cgi?fid=72943|format=pdf}}</ref><ref name="CIsufficient">{{cite journal|first1=Zsolt|last1=Csizmadia|first2=Tibor|last2=Illés|title=New criss-cross type algorithms for linear complementarity problems with sufficient matrices|journal=Optimization Methods and Software|volume=21|year=2006|number=2|pages=247–266|doi=10.1080/10556780500095009|
url=http://www.cs.elte.hu/opres/orr/download/ORR03_1.pdf|format=pdf|url2=http://www.tandfonline.com/doi/abs/10.1080/10556780500095009|eprint=http://www.tandfonline.com/doi/pdf/10.1080/10556780500095009|mr=2195759|<!-- ref=harv -->}}</ref> conversely, for linear complementarity problems, the criss-cross algorithm terminates finitely only if the matrix is a sufficient matrix.<ref name="HRT"/><ref name="CIsufficient"/> A [[sufficient&nbsp;matrix]] is a generalization both of a [[positive-definite matrix]] and of a [[P-matrix]], whose [[principal&nbsp;minor]]s are each positive.<ref name="HRT"/><ref name="CIsufficient"/><ref>{{cite journal|last1=Cottle|first1=R.&nbsp;W.|authorlink1=Richard W. Cottle|last2=Pang|first2=J.-S.|last3=Venkateswaran|first3=V.|title=Sufficient matrices and the linear&nbsp;complementarity problem|journal=Linear Algebra and its Applications|volume=114–115|year=1989|pages=231–249|doi=10.1016/0024-3795(89)90463-1|url=http://www.sciencedirect.com/science/article/pii/0024379589904631|month=March–April|mr=986877|ref=harv}}</ref>
Such LCPs can be solved when they are formulated abstractly using [[oriented matroid|oriented-matroid]] theory.<ref name="Todd" >{{harvtxt|Todd|1985|}}</ref><ref>{{harvtxt|Terlaky|Zhang|1993}}: {{cite journal|last1=Terlaky|first1=Tamás|<!-- authorlink1=Tamás Terlaky -->|last2=Zhang|first2=Shu&nbsp;Zhong|title=Pivot rules for linear programming: A Survey on recent theoretical developments|issue=Degeneracy in optimization problems|journal=Annals of Operations Research|volume=46–47|year=1993|issue=1|pages=203–233|doi=10.1007/BF02096264|mr=1260019|id= {{citeseerx|10.1.1.36.7658}} |publisher=Springer Netherlands|issn=0254-5330|ref=harv}}</ref><ref>{{cite book|last=Björner|first=Anders|last2=Las&nbsp;Vergnas|author2-link=Michel Las Vergnas|first2=Michel|last3=Sturmfels|first3=Bernd|authorlink3=Bernd Sturmfels|last4=White|first4=Neil|last5=Ziegler|first5=Günter|authorlink5=Günter M. Ziegler|title=Oriented Matroids|chapter=10 Linear programming|publisher=Cambridge University Press|year=1999|isbn=978-0-521-77750-6|url=http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511586507|pages=417–479|doi=10.1017/CBO9780511586507|MR=1744046}}</ref>
 
== See also ==
*[[Complementarity theory]]
*[[Physics engine]] Impulse/constraint type physics engines for games use this approach.
*[[Contact dynamics]] Contact dynamics with the nonsmooth approach
 
==Notes==
{{Reflist}}
 
== References ==
 
* {{cite book|last1=Cottle|first1=Richard W.|last2=Pang|first2=Jong-Shi|last3=Stone|first3=Richard E.|title=The linear complementarity problem | series=Computer Science and Scientific Computing|publisher=Academic Press, Inc.|location=Boston, MA|year=1992|pages=xxiv+762 pp.|isbn=0-12-192350-9|mr=1150683|ref=harv}}
*{{cite journal|last1=Cottle|first1=R.&nbsp;W.|authorlink1=Richard W. Cottle|last2=Pang|first2=J.-S.|last3=Venkateswaran|first3=V.|title=Sufficient matrices and the linear&nbsp;complementarity problem|journal=Linear Algebra and its Applications|volume=114–115|year=1989|pages=231–249|doi=10.1016/0024-3795(89)90463-1|url=http://www.sciencedirect.com/science/article/pii/0024379589904631|month=March–April|mr=986877|ref=harv}}
* {{cite journal|first1=Zsolt|last1=Csizmadia|first2=Tibor|last2=Illés|title=New criss-cross type algorithms for linear complementarity problems with sufficient matrices|journal=Optimization Methods and Software|volume=21|year=2006|number=2|pages=247–266|doi=10.1080/10556780500095009|
url=http://www.cs.elte.hu/opres/orr/download/ORR03_1.pdf|format=pdf|url2=http://www.tandfonline.com/doi/abs/10.1080/10556780500095009|eprint=http://www.tandfonline.com/doi/pdf/10.1080/10556780500095009|mr=2195759|<!-- ref=harv -->}}
* {{cite journal|last1=Fukuda|first1=Komei|authorlink1=Komei Fukuda|last2=Namiki|first2=Makoto|title=On extremal behaviors of Murty's least index method|journal=Mathematical Programming|date=March 1994|pages=365–370|volume=64|issue=1|doi=10.1007/BF01582581|ref=harv|mr=1286455}}
* {{cite journal|first1=D. |last1=den&nbsp;Hertog|first2=C.|last2=Roos|first3=T.|last3=Terlaky|title=The linear complementarity problem, sufficient matrices, and the criss-cross method|journal=Linear Algebra and its Applications|volume=187|date=1 July 1993|pages=1–14|doi=10.1016/0024-3795(93)90124-7|url=http://www.sciencedirect.com/science/article/pii/0024379593901247|<!-- ref=harv -->|url=http://arno.uvt.nl/show.cgi?fid=72943|format=pdf}}
* {{cite book|last=Murty|first=K. G.|title=Linear complementarity, linear and nonlinear programming|series=Sigma Series in Applied Mathematics|volume=3|publisher=Heldermann Verlag|location=Berlin|year=1988|pages=xlviii+629 pp.|isbn=3-88538-403-5|url=http://ioe.engin.umich.edu/people/fac/books/murty/linear_complementarity_webbook/| mr=949214|id=[http://www-personal.umich.edu/~murty/ Updated and free PDF version at Katta G. Murty's website]|ref=harv}}
* {{cite journal|first1=Komei|last1=Fukuda|<!-- authorlink1=Komei Fukuda -->|first2=Tamás|last2=Terlaky|<!-- authorlink2=Tamás Terlaky -->|title=Criss-cross methods: A fresh view on pivot algorithms |doi=10.1007/BF02614325|journal=Mathematical Programming: Series&nbsp;B|volume=79
|issue=1—3|pages=369–395|issue=Papers from the&nbsp;16th International Symposium on Mathematical Programming held in Lausanne,&nbsp;1997|editors=Thomas&nbsp;M. Liebling and Dominique de&nbsp;Werra|publisher=North-Holland Publishing&nbsp;Co. |location=Amsterdam|year=1997|doi=10.1016/S0025-5610(97)00062-2|mr=1464775|ref=harv|id=[http://www.cas.mcmaster.ca/~terlaky/files/crisscross.ps Postscript preprint]}}
*{{cite journal|last=Todd|first=Michael&nbsp;J.|authorlink=Michael J. Todd (mathematician)|title=Linear and quadratic programming in oriented matroids|journal=Journal of Combinatorial Theory|series=Series&nbsp;B|volume=39|year=1985|issue=2|pages=105–133|mr=811116|doi=10.1016/0095-8956(85)90042-5|ref=harv}}
 
==Further reading==
* R. W. Cottle and [[G. B. Dantzig]]. Complementary pivot theory of mathematical programming. ''Linear Algebra and its Applications'', 1:103-125, 1968.
* {{cite journal|last1=Terlaky|first1=Tamás|<!-- authorlink1=Tamás Terlaky -->|last2=Zhang|first2=Shu&nbsp;Zhong|title=Pivot rules for linear programming: A Survey on recent theoretical developments|issue=Degeneracy in optimization problems|journal=Annals of Operations Research|volume=46–47|year=1993|issue=1|pages=203–233|doi=10.1007/BF02096264|mr=1260019|id = {{citeseerx|10.1.1.36.7658}} |publisher=Springer Netherlands|issn=0254-5330|ref=harv}}
 
== External links ==
* [http://www1.american.edu/econ/gaussres/optimize/quadprog.src LCPSolve] &mdash; A simple procedure in GAUSS to solve a linear complementarity problem
* [http://www.openopt.org/LCP LCPSolve.py] &mdash; A Python/NumPy implementation of LCPSolve is part of [[OpenOpt]] since its release 0.32
* [[Siconos]]/Numerics open-source GPL  implementation in C of Lemke's algorithm and other methods to solve LCPs and MLCPs
 
{{Mathematical programming}}
 
[[Category:Linear algebra]]
[[Category:Mathematical optimization]]

Latest revision as of 05:25, 30 September 2014



Another day I woke up and noticed - I have also been single for a while today and after much intimidation from buddies I today locate myself on tour with luke bryan signed up for on line dating. They assured me that there are plenty of pleasant, standard and interesting individuals to meet up, therefore here goes Luke bryan tours 2014 the message!
My fam and luke bryan my kinda night tour buddies are magnificent and spending some time with them at tavern gigs or dinners is always critical. As I discover you could never have a good dialogue with all the sound I haven't ever been into cabarets. In addition, I got 2 undoubtedly cheeky and quite cunning puppies that are consistently eager to meet up fresh folks.
I endeavor to maintain as physically fit as potential staying at the gymnasium many times weekly. I enjoy my sports and try to play or see as many a potential. Being wintertime I am going to regularly at Hawthorn suits. luke bryan concert videos Note: If you will contemplated shopping an activity I do not mind, I've noticed the carnage of wrestling fits at stocktake revenue.

Feel free to visit my web-site: luke bryan tickets boston (minioasis.com)