Estimation theory: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>JuL789
m corrected small typo (extra "and")
 
Line 1: Line 1:
In [[mathematics]], more specifically in [[point-set topology]], the '''derived set''' of a subset ''S'' of a [[topological space]] is the set of all [[limit point]]s of ''S''. It is usually denoted by ''<math>S'</math>''.
incluso en casa, también puede permitir que usted tiene un estilo de pelo bonito,. Nuestra tienda lo vende a un precio razonable, con el buen producto calidad.Con se utiliza sobre todo el tratamiento de la superficie, la nobleza es elegante, calidad de primer nivel. principales productos ghd para los hierros que se enderezan, adopta principalmente la tecnología de calefacción de porcelana, use el elemento de cerámica de producción coreana de calefacción y producción de Corea del tablero de la fiebre, y la nanotecnología implante,<br><br>If you loved this article and also you would like to get more info pertaining to [http://tinyurl.com/qhycvg3 baratas plancha ghd] generously visit our internet site.
 
The concept was first introduced by [[Georg Cantor]] in 1872 and he developed [[set theory]] in large part to study derived sets on the [[real line]].
 
== Properties ==
A subset ''S'' of a [[topological space]] is [[closed set|closed]] precisely when <math>S' \subseteq S</math>, when <math>S</math> contains all its limit points.  Two subsets ''S'' and ''T'' are [[separated sets|separated]] precisely when they are [[disjoint sets|disjoint]] and each is disjoint from the other's derived set (though the derived sets don't need to be disjoint from each other).  
 
The set ''S'' is defined to be a '''perfect set''' if <math>S = S'</math>.  Equivalently, a perfect set is a closed set with no [[isolated point]]s. Perfect sets are particularly important in applications of the [[Baire category theorem]].
 
Two topological spaces are [[homeomorphic]] if and only if there is a [[bijection]] from one to the other such that the derived set of the image of any subset is the image of the derived set of that subset.
 
The '''[[Cantor–Bendixson theorem]]''' states that any [[Polish space]] can be written as the union of a countable set and a perfect set. Because any [[g-delta set|''G''<sub>δ</sub>]] subset of a Polish space is again a Polish space, the theorem also shows that any ''G''<sub>δ</sub> subset of a Polish space is the union of a countable set and a set that is perfect with respect to the [[induced topology]].
 
== Topology in terms of derived sets ==
 
Because homeomorphisms can be described entirely in terms of derived sets, derived sets have been used as the primitive notion in [[topology]]. A set of points ''X'' can be equipped with an operator <sup>*</sup> mapping subsets of ''X'' to subsets of ''X'', such that for any set ''S'' and any point ''a'':
 
# <math>\empty^* = \empty</math>
# <math>S^{**} \subseteq S^*</math>
# <math>a \in S^* \implies a \in (S \setminus \{a\})^*</math>
# <math>(S \cup T)^* \subseteq S^* \cup T^*</math>
# <math>S \subseteq T \implies S^* \subseteq T^*</math>
 
Note that given 5, 3 is equivalent to 3' below, and that 4 and 5 together are equivalent to 4' below, so we have the following equivalent axioms:
 
# <math>\empty^* = \empty</math>
# <math>S^{**} \subseteq S^*</math>
*3'. &nbsp; <math>S^* = (S \setminus \{a\})^*</math>
*4'. &nbsp; <math> \, (S \cup T)^* = S^* \cup T^*</math>
 
Calling a set S ''closed'' if <math>S^* \subseteq S</math> will define a topology on the space in which <sup>*</sup> is the derived set operator, that is, <math>S^* = S' \,\!</math>If we also require that the derived set of a set consisting of a single element be empty, the resulting space will be a [[T1 space|T<sub>1</sub> space]]. In fact, 2 and 3' can fail in a space that is not T<sub>1</sub>.
 
== Cantor–Bendixson rank ==
 
For [[ordinal number]]s ''α'', the ''α''-th '''Cantor–Bendixson derivative''' of a topological space is defined by [[transfinite induction]] as follows:
*<math>\displaystyle X^0=X</math>
*<math>\displaystyle X^{\alpha+1}=(X^\alpha)'</math>
*<math>\displaystyle X^\lambda=\bigcap_{\alpha<\lambda}X^\alpha</math> for [[limit ordinal]]s ''λ''.
The transfinite sequence of Cantor–Bendixson derivatives of ''X'' must eventually be constant. The smallest ordinal ''α'' such that ''X''<sup>''α''+1</sup> = ''X''<sup>''α''</sup> is called the '''Cantor–Bendixson rank''' of ''X''.
 
== See also ==
* [[Perfect space]]
 
== External links ==
* [http://planetmath.org/encyclopedia/CantorBendixsonDerivative.html PlanetMath's article on the Cantor–Bendixson derivative]
 
== References ==
* {{cite book|author = Kechris, A. | title = Classical Descriptive Set Theory | edition = [[Graduate Texts in Mathematics]] 156 | publisher = Springer | year = 1995 | isbn =978-0-387-94374-9}}
* [[Wacław Sierpiński|Sierpiński, Wacław F.]]; translated by [[Cecilia Krieger|Krieger, C. Cecilia]] (1952). ''General Topology''. [[University of Toronto]] Press.
 
[[Category:General topology]]

Latest revision as of 16:32, 2 July 2014

incluso en casa, también puede permitir que usted tiene un estilo de pelo bonito,. Nuestra tienda lo vende a un precio razonable, con el buen producto calidad.Con se utiliza sobre todo el tratamiento de la superficie, la nobleza es elegante, calidad de primer nivel. principales productos ghd para los hierros que se enderezan, adopta principalmente la tecnología de calefacción de porcelana, use el elemento de cerámica de producción coreana de calefacción y producción de Corea del tablero de la fiebre, y la nanotecnología implante,

If you loved this article and also you would like to get more info pertaining to baratas plancha ghd generously visit our internet site.