Powder diffraction: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Hovden
 
Line 1: Line 1:
'''Mueller calculus''' is a matrix method for manipulating [[Stokes vectors]], which represent the [[Polarization (waves)|polarization]] of light. It was developed in 1943 by [[Hans Mueller (physicist)|Hans Mueller]], a professor of physics at the [[Massachusetts Institute of Technology]]. In this technique, the effect of a particular optical element is represented by a Mueller matrix—a 4×4 matrix that is a generalization of the [[Jones calculus|Jones matrix]].
The name of the author is Numbers but it's not the most masucline name out there. California is our birth location. My working day job is a meter reader. Doing ceramics is what adore doing.<br><br>Feel free to surf to my blog ... std home test ([http://www.streaming.iwarrior.net/blog/258268 please click the up coming post])
 
Light which is unpolarized or partially polarized must be treated using Mueller calculus, while fully polarized light can be treated with either Mueller calculus or the simpler [[Jones calculus]]. Many problems involving [[coherence_(physics)|coherent]] light (such as from a [[laser]]) must be treated with Jones calculus, because it works with [[amplitude]] rather than [[intensity (physics)|intensity]] of light, and retains information about the [[phase (waves)|phase]] of the waves.  
 
Any fully polarized, partially polarized, or unpolarized state of light can be represented by a [[Stokes vector]] {{nowrap|(<math>\vec S</math>)}}. Any optical element can be represented by a Mueller matrix (M).
 
If a beam of light is initially in the state <math>\vec S_i</math> and then passes through an optical element M and comes out in a state <math>\vec S_o</math>, then it is written
 
:<math> \vec S_o  = \mathrm M  \vec S_i \ .</math>
 
If a beam of light passes through optical element M<sub>1</sub> followed by M<sub>2</sub> then M<sub>3</sub> it is written
 
:<math> \vec S_o = \mathrm M_3 \big(\mathrm M_2 (\mathrm M_1 \vec S_i) \big) \ </math>
 
given that [[matrix multiplication]] is [[associative]] it can be written
 
:<math> \vec S_o  = \mathrm M_3  \mathrm M_2  \mathrm M_1 \vec S_i \  .</math>
 
Matrix multiplication is not commutative, so in general
 
:<math> \mathrm M_3 \mathrm M_2 \mathrm M_1 \vec S_i \ne \mathrm M_1  \mathrm M_2 \mathrm M_3 \vec S_i \ .</math>
 
Below are listed the Mueller matrices for some ideal common optical elements:
 
:<math>
{1 \over 2}
\begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\quad
</math> Linear polarizer (Horizontal Transmission)
 
:<math> 
{1 \over 2}
\begin{pmatrix}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\quad
</math> Linear polarizer (Vertical Transmission)
 
:<math> 
{1 \over 2}
\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\quad
</math> Linear polarizer (+45° Transmission)
 
:<math> 
{1 \over 2}
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\quad
</math> Linear polarizer (-45° Transmission)
 
:<math> 
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\quad
</math> Quarter [[wave plate]] (fast-axis vertical)
 
:<math> 
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{pmatrix}
\quad
</math> Quarter [[wave plate]] (fast-axis horizontal)
 
:<math> 
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}
\quad
</math> Half [[wave plate]] (fast-axis vertical)
 
:<math> 
{1 \over 4}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\quad
</math> Attenuating filter (25% Transmission)
 
== See also ==
* [[Stokes parameters]]
* [[Jones calculus]]
* [[Polarization (waves)]]
 
==References==
*E. Collett, ''Field Guide to Polarization'', SPIE Field Guides vol. '''FG05''', SPIE (2005). ISBN 0-8194-5868-6.
*E. Hecht, ''Optics'', 2nd ed., Addison-Wesley (1987). ISBN 0-201-11609-X.
*{{Cite book
  | last = del Toro Iniesta
  | first = Jose Carlos
  | authorlink =
  | coauthors =
  | title = Introduction to Spectropolarimetry
  | publisher = Cambridge University Press
  | date = 2003
  | location = Cambridge, UK
  | pages = 227
  | url = http://www.cambridge.org/catalogue/catalogue.asp?isbn=0521818273
  | doi =
  | id =
  | isbn = 978-0-521-81827-8 }}
 
[[Category:Polarization (waves)]]
[[Category:Matrices]]

Latest revision as of 17:57, 7 November 2014

The name of the author is Numbers but it's not the most masucline name out there. California is our birth location. My working day job is a meter reader. Doing ceramics is what adore doing.

Feel free to surf to my blog ... std home test (please click the up coming post)