Order isomorphism: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Daniel5Ko
m Examples: Fixed typos.
 
en>Kangyh9659
m In the "Order Type" category, I have changed some words in the second sentence from the very last sentence: From "partial orders" To "partially ordered sets"
 
Line 1: Line 1:
Hello! <br>My name is Carey and I'm a 29 years old girl from Le Mee-Sur-Seine.<br>xunjie 節度の服の原則を把握する方法を見ることができます両方密接休日のテーマにリンクされたが、
In [[probability theory]], the '''law of total covariance''',<ref>Matthew R. Rudary, ''On Predictive Linear Gaussian Models'', ProQuest, 2009, page 121.</ref> '''covariance decomposition formula''', or '''ECCE'''  states that if ''X'', ''Y'', and ''Z'' are [[random variable]]s on the same [[probability space]], and the [[covariance]] of ''X'' and ''Y'' is finite, then
このブランドのハイライトとなり、
ベッカムニューヨークファッションウィークのデビューは、 [http://www.montessorimatt.com/images/small/3cj/b4t/shop/melissa/ ���å� ѥ] ファッションライフをリードする国際的なファッションの要素、
どのように125なかったので大きいですか? GAB最近、
良い動きになるように、 [http://mountainsofthemoon.co.ug/plugins/js/tory.html �ȥ�`�Щ`�� ؔ�� ��] ソフトで滑らかなシルエットので少し衣装を見せるバレエラヴェルのボレロ設計バレエ衣類年にクリストバル·バレンシアガ触発レベル比例ジャグリングバレンシアガリゾート2013女性のレベルに比例トリックバレンシアガリゾート2013女性のレベルのスケールトリックバレンシアガリゾート2013女性のコレクション、
私たちは前進することができサンタクロースの味をかぐ、
超高透水性足をドライで快適子供の時間は残っているように、[http://www.mazz.ch/mall/fashionbag.html ����ͥ� ؔ�� �����ۤ�] ドレスの独自のスタイルに合わせてミックスすることができます。
購入することに注意する必要があります思い出させる。
またある幸せな結婚だけ、
アストンマーチンジャガー·ルクルトマスターシリーズ、 [http://physicianresources.com/cache/store/paul.html �ݩ`�륹�ߥ��Х�<br><br>�ǥ��`��]


Feel free to surf to my web-site [http://www.oca-stgallen.ch/sell/gagashop.php ガガミラノ 腕時計]
:<math>\operatorname{cov}(X,Y)=\operatorname{E}(\operatorname{cov}(X,Y \mid Z))+\operatorname{cov}(\operatorname{E}(X\mid Z),\operatorname{E}(Y\mid Z)).\,</math>
 
The nomenclature in this article's title parallels the phrase ''[[law of total variance]]''.  Some writers on probability call this the "conditional covariance formula"<ref>Sheldon M. Ross, ''A First Course in Probability'', sixth edition, Prentice Hall, 2002, page 392.</ref> or use other names.
 
(The [[conditional expected value]]s E( ''X'' | ''Z'' ) and E( ''Y'' | ''Z'' ) are random variables in their own right, whose values depends on the value of ''Z''.  Notice that the conditional expected value of ''X'' given the ''event''  ''Z'' = ''z'' is a function of ''z'' (this is where adherence to the conventional rigidly case-sensitive notation of probability theory becomes important!).  If we write E( ''X'' | ''Z'' = ''z'') = ''g''(''z'') then the random variable E( ''X'' | ''Z'' ) is just ''g''(''Z''). Similar comments apply to the conditional covariance.)
 
==Proof==
 
The law of total covariance can be proved using the [[law of total expectation]]:  First,
 
:<math>\operatorname{cov}[X,Y] = \operatorname{E}[XY] - \operatorname{E}[X]\operatorname{E}[Y]</math>
 
from the definition of covariance.  Then we apply the law of total expectation by conditioning on the random variable ''Z'':
 
::<math>= \operatorname{E}[\operatorname{E}[XY\mid Z]] - \operatorname{E}[\operatorname{E}[X\mid Z]]\operatorname{E}[\operatorname{E}[Y\mid Z]]</math>
 
Now we rewrite the term inside the first expectation using the definition of covariance:
 
::<math>= \operatorname{E}\!\left[\operatorname{cov}[X,Y\mid Z] + \operatorname{E}[X\mid Z]\operatorname{E}[Y\mid Z]\right] - \operatorname{E}[\operatorname{E}[X\mid Z]]\operatorname{E}[\operatorname{E}[Y\mid Z]]</math>
 
Since expectation of a sum is the sum of expectations, we can regroup the terms:
 
::<math>= \operatorname{E}\!\left[\operatorname{cov}[X,Y\mid Z]] + \operatorname{E}[\operatorname{E}[X\mid Z]\operatorname{E}[Y\mid Z]\right] - \operatorname{E}[\operatorname{E}[X\mid Z]]\operatorname{E}[\operatorname{E}[Y\mid Z]]</math>
 
Finally, we recognize the final two terms as the covariance of the conditional expectations E[''X''|''Z''] and E[''Y''|''Z'']:
 
::<math>= \operatorname{E}(\operatorname{cov}(X,Y \mid Z))+\operatorname{cov}(\operatorname{E}(X\mid Z),\operatorname{E}(Y\mid Z))</math>
 
== Notes and references ==
{{reflist}}
 
==See also==
*[[Law of total variance]], a special case corresponding to&nbsp;''X''&nbsp;=&nbsp;''Y''.
 
==External links==
 
{{DEFAULTSORT:Law Of Total Covariance}}
[[Category:Algebra of random variables]]
[[Category:Covariance and correlation]]
[[Category:Articles containing proofs]]
[[Category:Theory of probability distributions]]
[[Category:Statistical theorems]]
[[Category:Statistical laws]]

Latest revision as of 15:52, 1 February 2014

In probability theory, the law of total covariance,[1] covariance decomposition formula, or ECCE states that if X, Y, and Z are random variables on the same probability space, and the covariance of X and Y is finite, then

cov(X,Y)=E(cov(X,YZ))+cov(E(XZ),E(YZ)).

The nomenclature in this article's title parallels the phrase law of total variance. Some writers on probability call this the "conditional covariance formula"[2] or use other names.

(The conditional expected values E( X | Z ) and E( Y | Z ) are random variables in their own right, whose values depends on the value of Z. Notice that the conditional expected value of X given the event Z = z is a function of z (this is where adherence to the conventional rigidly case-sensitive notation of probability theory becomes important!). If we write E( X | Z = z) = g(z) then the random variable E( X | Z ) is just g(Z). Similar comments apply to the conditional covariance.)

Proof

The law of total covariance can be proved using the law of total expectation: First,

cov[X,Y]=E[XY]E[X]E[Y]

from the definition of covariance. Then we apply the law of total expectation by conditioning on the random variable Z:

=E[E[XYZ]]E[E[XZ]]E[E[YZ]]

Now we rewrite the term inside the first expectation using the definition of covariance:

=E[cov[X,YZ]+E[XZ]E[YZ]]E[E[XZ]]E[E[YZ]]

Since expectation of a sum is the sum of expectations, we can regroup the terms:

=E[cov[X,YZ]]+E[E[XZ]E[YZ]]E[E[XZ]]E[E[YZ]]

Finally, we recognize the final two terms as the covariance of the conditional expectations E[X|Z] and E[Y|Z]:

=E(cov(X,YZ))+cov(E(XZ),E(YZ))

Notes and references

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

See also

External links

  1. Matthew R. Rudary, On Predictive Linear Gaussian Models, ProQuest, 2009, page 121.
  2. Sheldon M. Ross, A First Course in Probability, sixth edition, Prentice Hall, 2002, page 392.