Atomic ratio: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>ClueBot NG
m Reverting possible vandalism by 208.90.28.102 to version by 35.9.41.215. False positive? Report it. Thanks, ClueBot NG. (1647313) (Bot)
en>Dexbot
m Bot: Fixing broken section link
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
[[Image:DickmanRho.png|thumb|right|400px|The Dickman–de Bruijn function ρ(''u'') plotted on a logarithmic scale. The horizontal axis is the argument ''u'', and the vertical axis is the value of the function. The graph nearly makes a downward line on the logarithmic scale, demonstrating that the logarithm of the function is [[Linearithmic function|quasilinear]].]]
Hi there, I am Alyson Pomerleau and I believe it sounds fairly good when you say it. To climb is something I truly appreciate performing. Alaska is the only place I've been residing in but now I'm contemplating other options. My working day occupation is a travel agent.<br><br>My page: email psychic readings ([http://bigpolis.com/blogs/post/6503 visit the following web site])
In [[analytic number theory]], the '''Dickman function''' or '''Dickman–de Bruijn function''' ρ is a [[special function]] used to estimate the proportion of [[smooth number]]s up to a given bound.
It was first studied by actuary [[Karl Dickman]], who defined it in his only mathematical publication,<ref>{{cite journal |first=K. |last=Dickman |title=On the frequency of numbers containing prime factors of a certain relative magnitude |journal=Arkiv för Matematik, Astronomi och Fysik |volume=22A |issue=10 |year=1930 |pages=1–14 }}</ref> and  later studied by the Dutch mathematician [[Nicolaas Govert de Bruijn]].<ref>{{cite journal |first=N. G. |last=de Bruijn |url=http://alexandria.tue.nl/repository/freearticles/597499.pdf |title=On the number of positive integers ≤ ''x'' and free of prime factors > ''y'' |journal=Indagationes Mathematicae |volume=13 |year=1951 |pages=50–60 }}</ref><ref>{{cite journal |first=N. G. |last=de Bruijn |url=http://alexandria.tue.nl/repository/freearticles/597534.pdf |title=On the number of positive integers ≤ ''x'' and free of prime factors > ''y'', II |journal=Indagationes Mathematicae |volume=28 |issue= |year=1966 |pages=239–247 }}</ref>
 
==Definition==
The Dickman-de Bruijn function <math>\rho(u)</math> is a [[continuous function]] that satisfies the [[delay differential equation]]
 
:<math>u\rho'(u) + \rho(u-1) = 0\,</math>
 
with initial conditions <math>\rho(u) = 1</math> for 0&nbsp;≤&nbsp;''u''&nbsp;≤&nbsp;1. Dickman proved that, when <math> a </math> is fixed, we have
:<math>\Psi(x, x^{1/a})\sim x\rho(a)\,</math>
where <math>\Psi(x,y)</math> is the number of ''y''-[[Smooth number|smooth]] (or ''y''-[[Friable number|friable]]) integers below&nbsp;''x''.
 
V. Ramaswami of [[Andhra University]] later gave a rigorous proof that <math>\Psi(x,x^{1/a})</math> was asymptotic to <math>x \rho(a)</math>, with the [[error bound]]
 
:<math>\Psi(x,x^{1/a})=x\rho(a)+O(x/\log x)</math>
 
in [[big O notation]].<ref>{{cite journal |first=V. |last=Ramaswami |url=http://www.ams.org/bull/1949-55-12/S0002-9904-1949-09337-0/S0002-9904-1949-09337-0.pdf |title=On the number of positive integers less than <math>x</math> and free of prime divisors greater than&nbsp;''x''<sup>''c''</sup> |journal=Bulletin of the American Mathematical Society |volume=55 |issue= |year=1949 |pages=1122–1127 |doi= }}</ref>
 
==Applications==
 
The main purpose of the Dickman–de Bruijn function is to estimate the frequency of smooth numbers at a given size.  This can be used to optimize various number-theoretical algorithms, and can be useful of its own right.
 
It can be shown using <math>\log\rho</math> that<ref>{{cite journal |first=A. |last=Hildebrand |first2=G. |last2=Tenenbaum |url=http://archive.numdam.org/article/JTNB_1993__5_2_411_0.pdf |title=Integers without large prime factors |journal=[[Journal de théorie des nombres de Bordeaux]] |volume=5 |issue=2 |year=1993 |pages=411–484 }}</ref>
 
:<math>\Psi(x,y)=xu^{O(-u)}</math>
 
which is related to the estimate <math>\rho(u)\approx u^{-u}</math> below.
 
The [[Golomb–Dickman constant]] has an alternate definition in terms of the Dickman–de Bruijn function.
 
==Estimation==
A first approximation might be <math>\rho(u)\approx u^{-u}.\,</math> A better estimate is<ref name="vandeLuneWattel" />
 
:<math>\rho(u)\sim\frac{1}{\xi\sqrt{2\pi u}}\cdot\exp(-u\xi+\operatorname{Ei}(\xi))</math>
 
where Ei is the [[exponential integral]] and ξ is the positive root of
 
:<math>e^\xi-1=u\xi.\,</math>
 
A simple upper bound is <math>\rho(x)\le1/x!.</math>
 
{| class="wikitable" style="float:right"
|-
! <math>u</math>
! <math>\rho(u)</math>
|-
| 1
| 1
|-
| 2
| 3.0685282{{e|-1}}
|-
| 3
| 4.8608388{{e|-2}}
|-
| 4
| 4.9109256{{e|-3}}
|-
| 5
| 3.5472470{{e|-4}}
|-
| 6
| 1.9649696{{e|-5}}
|-
| 7
| 8.7456700{{e|-7}}
|-
| 8
| 3.2320693{{e|-8}}
|-
| 9
| 1.0162483{{e|-9}}
|-
| 10
| 2.7701718{{e|-11}}
|}
 
==Computation==
For each interval [''n''&nbsp;&minus;&nbsp;1,&nbsp;''n''] with ''n'' an integer, there is an analytic function <math>\rho_n</math> such that <math>\rho_n(u)=\rho(u)</math>.  For 0&nbsp;≤&nbsp;''u''&nbsp;≤&nbsp;1, <math>\rho(u) = 1</math>. For 1&nbsp;≤&nbsp;''u''&nbsp;≤&nbsp;2, <math>\rho(u) = 1-\log u</math>. For 2&nbsp;≤&nbsp;''u''&nbsp;≤&nbsp;3,
 
:<math>\rho(u) = 1-(1-\log(u-1))\log(u) + \operatorname{Li}_2(1 - u) + \frac{\pi^2}{12}</math>.
 
with Li<sub>2</sub> the [[Polylogarithm#Dilogarithm|dilogarithm]]. Other <math>\rho_n</math> can be calculated using infinite series.<ref name="BachPeralta">{{cite journal |first=Eric |last=Bach |first2=René |last2=Peralta |url=http://cr.yp.to/bib/1996/bach-semismooth.pdf |title=Asymptotic Semismoothness Probabilities |journal=Mathematics of Computation |volume=65 |issue=216 |pages=1701–1715 |year=1996 |doi=10.1090/S0025-5718-96-00775-2 }}</ref>
 
An alternate method is computing lower and upper bounds with the [[trapezoidal rule]];<ref name="vandeLuneWattel">{{cite journal |first=J. |last=van de Lune |first2=E. |last2=Wattel |title=On the Numerical Solution of a Differential-Difference Equation Arising in Analytic Number Theory |journal=[[Mathematics of Computation]] |volume=23 |issue=106 |year=1969 |pages=417–421 |doi=10.1090/S0025-5718-1969-0247789-3 }}</ref> a mesh of progressively finer sizes allows for arbitrary accuracy. For high precision calculations (hundreds of digits), a recursive series expansion about the midpoints of the intervals is superior.<ref>{{cite journal |first=George |last=Marsaglia |first2=Arif |last2=Zaman |first3=John C. W. |last3=Marsaglia |title=Numerical Solution of Some Classical Differential-Difference Equations |journal=Mathematics of Computation |volume=53 |issue=187 |year=1989 |pages=191–201 |jstor= |doi=10.1090/S0025-5718-1989-0969490-3 }}</ref>
 
==Extension==
Bach and Peralta define a two-dimensional analog <math>\sigma(u,v)</math> of <math>\rho(u)</math>.<ref name="BachPeralta" /> This function is used to estimate a function <math>\Psi(x,y,z)</math> similar to de Bruijn's, but counting the number of ''y''-smooth integers with at most one prime factor greater than ''z''.  Then
:<math>\Psi(x,x^{1/a},x^{1/b})\sim x\sigma(b,a).\,</math>
 
==References==
<references/>
 
==External links==
* {{Cite arxiv
|first1=David
|last1=Broadhurst
|title=Dickman polylogarithms and their constants
|eprint=1004.0519
|year=2010
}}
* {{ Cite arxiv
|first1=K.
|last1=Soundararajan
|title=An asymptotic expansion related to the Dickman function
|eprint=1005.3494
|year=2010
}}
* {{mathworld|urlname=DickmanFunction|title=Dickman function}}
 
{{DEFAULTSORT:Dickman Function}}
[[Category:Analytic number theory]]
[[Category:Special functions]]

Latest revision as of 13:37, 16 December 2014

Hi there, I am Alyson Pomerleau and I believe it sounds fairly good when you say it. To climb is something I truly appreciate performing. Alaska is the only place I've been residing in but now I'm contemplating other options. My working day occupation is a travel agent.

My page: email psychic readings (visit the following web site)