RevPAR: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
Calculation: REVpar is a calculation of rooms revenue, not total revenue - hence the addition of the word 'rooms'
en>ClueBot NG
m Reverting possible vandalism by 83.240.208.254 to version by 209.37.184.15. False positive? Report it. Thanks, ClueBot NG. (1825074) (Bot)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{turing}}
Intensive Treatment Ambulance Paramedic Kneip from Thetford Mines, really loves geocaching, ganhando dinheiro na internet and walking. Always enjoys visiting spots for example Route of Santiago de Compostela.<br><br>My weblog ... [http://www.comoganhardinheiro101.com/como-ganhar-dinheiro-pela-internet/ como ficar rico]
'''Read-only right moving Turing machines''' are a particular type of [[Turing machine]].
 
== Definition ==
 
The definition based on a single infinite tape defined to be a 7-[[tuple]]
 
<math>M= \langle Q, \Gamma, b, \Sigma, \delta, q_0, F \rangle</math> where
* <math>Q</math> is a finite set of ''states''
* <math>\Gamma</math> is a finite set of the ''tape alphabet/symbols''
* <math>b \in \Gamma</math> is the ''blank symbol'' (the only symbol allowed to occur on the tape infinitely often at any step during the computation)
* <math>\Sigma</math>, a subset of <math>\Gamma</math> not including b is the set of ''input symbols''
* <math>\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{R\}</math> is a [[Function (mathematics)|function]] called the ''[[transition function]]'', R is a right movement (a right shift).
* <math>q_0 \in Q</math> is the ''initial state''
* <math>F \subseteq Q</math> is the set of ''final'' or ''accepting states''
 
In the case of these types of Turing Machines, the only movement is to the right.
There must exist at least one element of the set <math>F </math> (a '''HALT''' state) for the machine to accept a regular language (Not in including the empty language).
 
'''An example Read Only right moving Turing machine'''
 
:Q = { '''A''', '''B''', '''C''', '''HALT''' }
:Γ = { 0, 1 }
:b = 0 = "blank"
:Σ = <math>\varphi</math>, empty set
:δ = see state-table below
:q<sub>0</sub> = '''A''' = initial state
:F = the one element set of final states {'''HALT'''}
 
'''State table for 3 state, 2 symbol read only machine:'''
{|class="wikitable"
|- style="font-size:9pt"
| width="68.4" Height="22.8" valign="center" |
| width="37.2" align="center" valign="bottom" | Current state '''A''':
| width="37.2" valign="bottom" |
| width="37.2" valign="bottom" |
| width="37.2" align="center" valign="bottom" | Current state '''B''':
| width="37.2" valign="bottom" |
| width="37.2" valign="bottom" |
| width="37.2" align="center" valign="bottom" | Current state '''C''':
| width="37.2" valign="bottom" |
| width="37.2" valign="bottom" |
|- style="font-size:9pt"
| Height="22.8" valign="bottom" |
| align="center" valign="bottom" | Write symbol:
| align="center" valign="bottom" | Move tape:
| align="center" valign="bottom" | Next state:
| align="center" valign="bottom" | Write symbol:
| align="center" valign="bottom" | Move tape:
| align="center" valign="bottom" | Next state:
| align="center" valign="bottom" | Write symbol:
| align="center" valign="bottom" | Move tape:
| align="center" valign="bottom" | Next state:
|- style="font-size:9pt" align="center" valign="bottom"
| Height="12" | tape symbol is 0:
| 1
| R
|style="font-weight:bold" | B
| 1
| R
|style="font-weight:bold" | A
| 1
| R
|style="font-weight:bold" | B
|- style="font-size:9pt" align="center" valign="bottom"
| Height="12" | tape symbol is 1:
| 1
| R
|style="font-weight:bold" | C
| 1
| R
|style="font-weight:bold" | B
| 1
| N
| '''HALT'''
|}
 
==See also==
* [[Deterministic finite automaton|DFA]]
* [[Nondeterministic finite automaton|NDFA]]
* [[Finite state machine|Finite State Machine]]
* [[Read-only Turing machine]]
* [[Turing Machine]]
* [[Turing machine examples]]
 
==References==
* {{cite book | last = Davis| first = Martin | coauthors = Ron Sigal, Elaine J. Weyuker| title = Second Edition: Computability, Complexity, and Languages and Logic: Fundamentals of Theoretical Computer Science | edition = 2nd ed. | publisher = Academic Press, Harcourt, Brace & Company| location = San Diego | year = 1994| ISBN =0-12-206382-1}}
 
[[Category:Turing machine]]

Latest revision as of 13:17, 7 May 2014

Intensive Treatment Ambulance Paramedic Kneip from Thetford Mines, really loves geocaching, ganhando dinheiro na internet and walking. Always enjoys visiting spots for example Route of Santiago de Compostela.

My weblog ... como ficar rico