Nonlocality: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
 
en>Colonies Chris
sp
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
In [[elementary number theory]], a '''centered square number''' is a [[centered polygonal number|centered]] [[figurate number]] that gives the number of dots in a [[Square (geometry)|square]] with a dot in the center and all other dots surrounding the center dot in successive square layers.  That is, each centered square number equals the number of dots within a given [[taxicab geometry|city block distance]] of the center dot on a regular [[square lattice]].  While centered square numbers, like [[figurate number]]s in general, have few if any direct practical applications, they are sometimes studied in [[recreational mathematics]] for their elegant geometric and arithmetic properties.
Hello! <br>My name is Kala and I'm a 18 years old girl from France.<br><br>My blog: Hostgator Coupon Code ([http://dawonls.dothome.co.kr/db/?document_srl=255968 http://dawonls.dothome.co.kr/db/?document_srl=255968])
 
The figures for the first four centered square numbers are shown below:
 
{|
|- align="center" valign="middle"
|[[Image:GrayDot.svg|16px]]
| &nbsp; &nbsp;
|[[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]]
| &nbsp; &nbsp;
|[[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]]
| &nbsp; &nbsp;
|[[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]]
|- align="center" valign="top"
| <math>C_{4,1} = 1</math>
| &nbsp; &nbsp;
| <math>C_{4,2} = 5</math>
| &nbsp; &nbsp;
| <math>C_{4,3} = 13</math>
| &nbsp; &nbsp;
| <math>C_{4,4} = 25</math>
|}
 
== Relationships with other figurate numbers ==
 
The ''n''th centered square number is given by the formula
 
:<math>C_{4,n} = n^2 + (n - 1)^2.\,</math>
 
In other words, a centered square number is the sum of two consecutive [[square number]]s. The following pattern demonstrates this formula:
 
{|
|- align="center" valign="middle"
|[[Image:GrayDot.svg|16px]]
| &nbsp; &nbsp;
|[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]]
| &nbsp; &nbsp;
|[[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]]
| &nbsp; &nbsp;
|[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]]
|- align="center" valign="top"
| <math>C_{4,1} = 0 + 1</math>
| &nbsp; &nbsp;
| <math>C_{4,2} = 1 + 4</math>
| &nbsp; &nbsp;
| <math>C_{4,3} = 4 + 9</math>
| &nbsp; &nbsp;
| <math>C_{4,4} = 9 + 16</math>
|}
 
The formula can also be expressed as
 
:<math>C_{4,n} = {(2n-1)^2 + 1 \over 2};</math>
 
that is, ''n'' th centered square number is half of ''n'' th odd square number plus one, as illustrated below:
 
{|
|- align="center" valign="bottom"
|[[Image:GrayDot.svg|16px]]
| &nbsp; &nbsp;
|[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]
| &nbsp; &nbsp;
|[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]
| &nbsp; &nbsp;
|[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]
|- align="center" valign="top"
| <math>C_{4,1} = (1 + 1) / 2</math>
| &nbsp; &nbsp;
| <math>C_{4,2} = (9 + 1) / 2</math>
| &nbsp; &nbsp;
| <math>C_{4,3} = (25 + 1) / 2</math>
| &nbsp; &nbsp;
| <math>C_{4,4} = (49 + 1) / 2</math>
|}
 
Like all [[centered polygonal number]]s, centered square numbers can also be expressed in terms of [[triangular number]]s:
 
:<math>C_{4,n} = 1 + 4\, T_{n-1},\,</math>
 
where
 
:<math>T_n = {n(n + 1) \over 2} = {n^2 + n \over 2} = {n+1 \choose 2}</math>
 
is the ''n''th triangular number.  This can be easily seen by removing the center dot and dividing the rest of the figure into four triangles, as below:
 
{|
|- align="center" valign="middle"
|[[Image:BlackDot.svg|16px]]
| &nbsp; &nbsp;
|[[Image:RedDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:BlackDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:RedDot.svg|16px]]
| &nbsp; &nbsp;
|[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:BlackDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]]
| &nbsp; &nbsp;
|[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:BlackDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]]
|- align="center" valign="top"
| <math>C_{4,1} = 1</math>
| &nbsp; &nbsp;
| <math>C_{4,2} = 1 + 4 \times 1</math>
| &nbsp; &nbsp;
| <math>C_{4,3} = 1 + 4 \times 3</math>
| &nbsp; &nbsp;
| <math>C_{4,4} = 1 + 4 \times 6.</math>
|}
 
The difference between two consecutive [[octahedral number]]s is a centered square number (Conway and Guy, p.50).
 
== Properties ==
 
The first few centered square numbers are:
 
:[[1 (number)|1]], [[5 (number)|5]], [[13 (number)|13]], [[25 (number)|25]], [[41 (number)|41]], [[61 (number)|61]], [[85 (number)|85]], [[113 (number)|113]], [[145 (number)|145]], 181, 221, 265, [[313 (number)|313]], [[365 (number)|365]], 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4325, … {{OEIS|id=A001844}}.
 
All centered square numbers are odd, and in base 10 one can notice the one's digits follows the pattern 1-5-3-5-1.
 
All centered square numbers and their divisors have a remainder of one when divided by four. Hence all centered square numbers and their divisors end with digits 1 or 5 in base [[senary|6]], [[octal|8]] or [[duodecimal|12]].
 
Every centered square number except 1 is the square of the third term of a leg–hypotenuse [[Pythagorean triple]] (for example, 3-4-5, 5-12-13).
 
=== Centered square prime ===
 
A '''centered square prime''' is a centered square number that is [[prime number|prime]].  Unlike regular [[square number]]s, which are never prime, quite a few of the centered square numbers are prime.  The first few centered square primes are:
 
:5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, … {{OEIS|id=A027862}}. A striking example can be seen in the 10th century al-Antaakii magic square.
 
== References ==
*{{citation
| last = Alfred | first = U.
| mr = 1571197
| issue = 3
| journal = Mathematics Magazine
| pages = 155–164
| title = {{math|''n''}} and {{math|''n'' + 1}} consecutive integers with equal sums of squares
| jstor = 2688938
| volume = 35
| year = 1962}}.
*{{Apostol IANT}}.
*{{citation
| last = Beiler | first = A. H.
| location = New York
| page = 125
| publisher = Dover
| title = Recreations in the Theory of Numbers
| year = 1964}}.
*{{citation
| last1 = Conway | first1 = John H. | author1-link = John Horton Conway
| last2 = Guy | first2 = Richard K. | author2-link = Richard K. Guy
| mr = 1411676
| isbn = 0-387-97993-X
| location = New York
| pages = 41–42
| publisher = Copernicus
| title = The Book of Numbers
| year = 1996}}.
 
==External links==
 
* [http://www.muljadi.org/Median.htm (''n''<sup>2</sup>&nbsp;+&nbsp;1)&nbsp;/&nbsp;2 as a special case of ''M''(''i'',&nbsp;''j'')&nbsp;=&nbsp;(''i''<sup>2</sup>&nbsp;+&nbsp;''j'')&nbsp;/&nbsp;2]
 
{{Classes of natural numbers}}
 
[[Category:Figurate numbers]]
[[Category:Quadrilaterals]]

Latest revision as of 19:22, 11 March 2014

Hello!
My name is Kala and I'm a 18 years old girl from France.

My blog: Hostgator Coupon Code (http://dawonls.dothome.co.kr/db/?document_srl=255968)