|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| In [[elementary number theory]], a '''centered square number''' is a [[centered polygonal number|centered]] [[figurate number]] that gives the number of dots in a [[Square (geometry)|square]] with a dot in the center and all other dots surrounding the center dot in successive square layers. That is, each centered square number equals the number of dots within a given [[taxicab geometry|city block distance]] of the center dot on a regular [[square lattice]]. While centered square numbers, like [[figurate number]]s in general, have few if any direct practical applications, they are sometimes studied in [[recreational mathematics]] for their elegant geometric and arithmetic properties.
| | Hello! <br>My name is Kala and I'm a 18 years old girl from France.<br><br>My blog: Hostgator Coupon Code ([http://dawonls.dothome.co.kr/db/?document_srl=255968 http://dawonls.dothome.co.kr/db/?document_srl=255968]) |
| | |
| The figures for the first four centered square numbers are shown below:
| |
| | |
| {|
| |
| |- align="center" valign="middle"
| |
| |[[Image:GrayDot.svg|16px]]
| |
| |
| |
| |[[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]]
| |
| |
| |
| |[[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]]
| |
| |
| |
| |[[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]]
| |
| |- align="center" valign="top"
| |
| | <math>C_{4,1} = 1</math>
| |
| |
| |
| | <math>C_{4,2} = 5</math>
| |
| |
| |
| | <math>C_{4,3} = 13</math>
| |
| |
| |
| | <math>C_{4,4} = 25</math>
| |
| |}
| |
| | |
| == Relationships with other figurate numbers ==
| |
| | |
| The ''n''th centered square number is given by the formula
| |
| | |
| :<math>C_{4,n} = n^2 + (n - 1)^2.\,</math>
| |
| | |
| In other words, a centered square number is the sum of two consecutive [[square number]]s. The following pattern demonstrates this formula:
| |
| | |
| {|
| |
| |- align="center" valign="middle"
| |
| |[[Image:GrayDot.svg|16px]]
| |
| |
| |
| |[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]]
| |
| |
| |
| |[[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]]
| |
| |
| |
| |[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]]
| |
| |- align="center" valign="top"
| |
| | <math>C_{4,1} = 0 + 1</math>
| |
| |
| |
| | <math>C_{4,2} = 1 + 4</math>
| |
| |
| |
| | <math>C_{4,3} = 4 + 9</math>
| |
| |
| |
| | <math>C_{4,4} = 9 + 16</math>
| |
| |}
| |
| | |
| The formula can also be expressed as
| |
| | |
| :<math>C_{4,n} = {(2n-1)^2 + 1 \over 2};</math> | |
| | |
| that is, ''n'' th centered square number is half of ''n'' th odd square number plus one, as illustrated below:
| |
| | |
| {|
| |
| |- align="center" valign="bottom"
| |
| |[[Image:GrayDot.svg|16px]]
| |
| |
| |
| |[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]
| |
| |
| |
| |[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]
| |
| |
| |
| |[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]<br>[[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]][[Image:MissingDot.svg|16px]]
| |
| |- align="center" valign="top"
| |
| | <math>C_{4,1} = (1 + 1) / 2</math>
| |
| |
| |
| | <math>C_{4,2} = (9 + 1) / 2</math>
| |
| |
| |
| | <math>C_{4,3} = (25 + 1) / 2</math>
| |
| |
| |
| | <math>C_{4,4} = (49 + 1) / 2</math>
| |
| |}
| |
| | |
| Like all [[centered polygonal number]]s, centered square numbers can also be expressed in terms of [[triangular number]]s:
| |
| | |
| :<math>C_{4,n} = 1 + 4\, T_{n-1},\,</math> | |
| | |
| where
| |
| | |
| :<math>T_n = {n(n + 1) \over 2} = {n^2 + n \over 2} = {n+1 \choose 2}</math>
| |
| | |
| is the ''n''th triangular number. This can be easily seen by removing the center dot and dividing the rest of the figure into four triangles, as below:
| |
| | |
| {|
| |
| |- align="center" valign="middle"
| |
| |[[Image:BlackDot.svg|16px]]
| |
| |
| |
| |[[Image:RedDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:BlackDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:RedDot.svg|16px]]
| |
| |
| |
| |[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:BlackDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]]
| |
| |
| |
| |[[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:BlackDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:GrayDot.svg|16px]][[Image:RedDot.svg|16px]][[Image:RedDot.svg|16px]]<br>[[Image:RedDot.svg|16px]]
| |
| |- align="center" valign="top"
| |
| | <math>C_{4,1} = 1</math>
| |
| |
| |
| | <math>C_{4,2} = 1 + 4 \times 1</math>
| |
| |
| |
| | <math>C_{4,3} = 1 + 4 \times 3</math>
| |
| |
| |
| | <math>C_{4,4} = 1 + 4 \times 6.</math>
| |
| |}
| |
| | |
| The difference between two consecutive [[octahedral number]]s is a centered square number (Conway and Guy, p.50).
| |
| | |
| == Properties ==
| |
| | |
| The first few centered square numbers are:
| |
| | |
| :[[1 (number)|1]], [[5 (number)|5]], [[13 (number)|13]], [[25 (number)|25]], [[41 (number)|41]], [[61 (number)|61]], [[85 (number)|85]], [[113 (number)|113]], [[145 (number)|145]], 181, 221, 265, [[313 (number)|313]], [[365 (number)|365]], 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4325, … {{OEIS|id=A001844}}.
| |
| | |
| All centered square numbers are odd, and in base 10 one can notice the one's digits follows the pattern 1-5-3-5-1.
| |
| | |
| All centered square numbers and their divisors have a remainder of one when divided by four. Hence all centered square numbers and their divisors end with digits 1 or 5 in base [[senary|6]], [[octal|8]] or [[duodecimal|12]].
| |
| | |
| Every centered square number except 1 is the square of the third term of a leg–hypotenuse [[Pythagorean triple]] (for example, 3-4-5, 5-12-13).
| |
| | |
| === Centered square prime ===
| |
| | |
| A '''centered square prime''' is a centered square number that is [[prime number|prime]]. Unlike regular [[square number]]s, which are never prime, quite a few of the centered square numbers are prime. The first few centered square primes are:
| |
| | |
| :5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, … {{OEIS|id=A027862}}. A striking example can be seen in the 10th century al-Antaakii magic square.
| |
| | |
| == References ==
| |
| *{{citation
| |
| | last = Alfred | first = U.
| |
| | mr = 1571197
| |
| | issue = 3
| |
| | journal = Mathematics Magazine
| |
| | pages = 155–164
| |
| | title = {{math|''n''}} and {{math|''n'' + 1}} consecutive integers with equal sums of squares
| |
| | jstor = 2688938
| |
| | volume = 35
| |
| | year = 1962}}.
| |
| *{{Apostol IANT}}.
| |
| *{{citation
| |
| | last = Beiler | first = A. H.
| |
| | location = New York
| |
| | page = 125
| |
| | publisher = Dover
| |
| | title = Recreations in the Theory of Numbers
| |
| | year = 1964}}.
| |
| *{{citation
| |
| | last1 = Conway | first1 = John H. | author1-link = John Horton Conway
| |
| | last2 = Guy | first2 = Richard K. | author2-link = Richard K. Guy
| |
| | mr = 1411676
| |
| | isbn = 0-387-97993-X
| |
| | location = New York
| |
| | pages = 41–42
| |
| | publisher = Copernicus
| |
| | title = The Book of Numbers
| |
| | year = 1996}}.
| |
| | |
| ==External links==
| |
| | |
| * [http://www.muljadi.org/Median.htm (''n''<sup>2</sup> + 1) / 2 as a special case of ''M''(''i'', ''j'') = (''i''<sup>2</sup> + ''j'') / 2]
| |
| | |
| {{Classes of natural numbers}}
| |
| | |
| [[Category:Figurate numbers]]
| |
| [[Category:Quadrilaterals]]
| |