|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| This is a list of some [[vector calculus]] formulae for working with common [[curvilinear coordinates|curvilinear]] [[coordinate system]]s.
| | Chances are you'll be graduating soon and ready to launch your profession in Singapore. Property Agent Singapore – Can You Property Hunt With out One? [http://insideabroad.com/activity/p/296084/ new property for sale] developers in Singapore say that they're pessimistic in regards to the outlook for the true estate market Let me return to the day we arrived in Singapore - Friday February 9 2007. We had been to remain in a serviced house till we may locate an appropriate condo for ourselves. Condominium or home? Compile a checklist of your requirements before you head out<br><br>Property agents for Singapore Land Authority overlaying a number of the authorities colonial properties for lease. Block 750 Oasis, Chai Chee Street, Technopark@Chai Chee #01-01 Singapore 469000. b. Place the money with the Singapore Academy of Regulation; or - Negotiate To Close A Sale The Medication Manufacturing Association of Singapore Chartered Management Institute, Singapore Singapore Noodles Manufacturers' Association Singapore Retail-Liquor Store Association The Singapore Sugar Merchants Affiliation Ltd Singapore Hardware & Instruments Affiliation Singapore Steel And Equipment Association Singapore Common Rice Importers Association The Institution of Engineers, Singapore Singapore E-book Publishers Association Singapore Fish Retailers Normal Affiliation Singapore Rubber Millers Association Finishing the Sale<br><br>Don't waste financial benefit of your empty house - renting out your own home is the fastest legal way to make sure a stable monthly cashflow to in opposition to any economic disaster. Clients curiosity and service excellence are my high priorities. I assure all homeowners and home-seekers that they will obtain my full, devoted and uncompromised dedication, right from the beginning of our partnerships. Eight Motive to carry up your home valuation,proprietor pls keep away from mistake engage my service & show you right process further $15 to $30k with right talent rare agent know Additionally by using one agent, you will save helpful time for your self and the agent. He or she will then perceive your wants and necessities after a few viewings. talk about safety points (house keys and so forth.)<br><br>Solely if you move both paper within the RES exams, are you able to apply for the salesperson license with Council of Estate Agency via Knight Frank. An annual charge of $299.60 is payable to CEA for this license by Knight Frank. Create a Financial Price range.is vital given the up and down of this risky market place. Your financial price range should plan in your marketing prices, any extra costs comparable to schooling and your forecasted earnings. Attention-grabbing, interested or nonetheless unsure? Call Leon Low @ 9369 5588 and you could find out more on how he and his Workforce members can help you on this Real Property Business. See you real soon! By guest contributor Getty Goh, Director of Ascendant Property , an actual estate research and investment consultancy agency.<br><br>Profitable advertising efforts herald several gives. The dilemma facing all sellers is which provide to accept. Sensible money would be on the highest offer with the least attached conditions. Not all patrons would be prepared to wait too lengthy for an acceptance of their provide. Effective negotiating requires being prompt. If you happen to really feel it's a honest provide in your property, it is sensible to barter immediately and enter into a sales contract. It might by no means be repeated. A chicken within the hand is price two in the bush. Always talk about together with your agent as to the eligibility of the customer, completion interval, and your legal obligations as a vendor.<br><br>But, ColinTan Coaching can give you the training you have to develop into a highly successful property agent with a massive common income at a fraction of the time and price wanted to attain the same level of success in different fields. The last category of misrepresentation is Innocent Misrepresentation.Such misrepresentations are those made by a Representor, who actually believed in its truth (due to this fact not fraudulent) and he is able to show that he has reasonable grounds to consider in its truth (therefore not negligent). On this instance, estate agent A believed that the tenure of the landed property is freehold and had carried out a title search to verify the same. Think about The Financial Possibilities With A Real Estate Agent Job Patent (Patent Agents) Guidelines 2001<br><br>Buying and selling, renting and leasing business and industrial properties coping with sellers, consumers, landlords and tenants. 20 Maxwell Road, #13-00 Maxwell Home, Singapore 069113. Renting and managing properties. Positioned at a hundred and twenty Sunset Approach #02-01, Club Home Clementi Park Condominium, Singapore 597152. Business and industrial actual estate consultants. Companies are company, mission advertising and marketing, funding sales and improvement, and properties and amenities management. 300 Jalan Bukit Ho Swee, #01-01, Singapore 169566. Built-in property portal and enterprise listing together with home providers for property associated wants. Actual estate agents for getting, selling, leasing, and renting property. Skilled Advertising Rental & Sale Management Specialize |
| | |
| == Notes ==
| |
| | |
| * This article uses the standard physics notation for [[spherical coordinate system|spherical coordinates]] (other sources may reverse the definitions of ''θ'' and ''ϕ''):
| |
| ** The polar angle is denoted by ''θ'': it is the angle between the ''z''-axis and the radial vector connecting the origin to the point in question.
| |
| ** The [[azimuth|azimuthal angle]] is denoted by ''ϕ'': it is the angle between the ''x''-axis and the projection of the radial vector onto the ''xy''-plane.
| |
| * The function {{nowrap|[[atan2]](''y'', ''x'')}} can be used instead of the mathematical function {{nowrap|[[arctan]](''y''/''x'')}} owing to its domain and image. The classical arctan function has an image of {{nowrap|(−π/2, +π/2)}}, whereas atan2 is defined to have an image of {{nowrap|(−π, π]}}.
| |
| <!--(The expressions for the Del in spherical coordinates may need to be corrected)--> | |
| | |
| == Formulae ==
| |
| <div style="overflow:scroll;"> | |
| {| class="wikitable" style="background: white"
| |
| |+ Table with the [[del]] operator in cylindrical, spherical and parabolic cylindrical coordinates
| |
| <!-- Header -->
| |
| |-
| |
| ! style="background: white" | Operation
| |
| ! style="background: white" | [[Cartesian coordinates]] {{math|(''x'', ''y'', ''z'')}}
| |
| ! style="background: white" | [[Cylindrical coordinates]] {{math|(''ρ'', ''ϕ'', ''z'')}}
| |
| ! style="background: white" | [[Spherical coordinates]] {{math|(''r'', ''θ'', ''ϕ'')}}
| |
| ! style="background: white" | [[Parabolic cylindrical coordinates]] {{math|(''σ'', ''τ'', ''z'')}}
| |
| | |
| <!-- Definition of coordinates -->
| |
| |- align="center"
| |
| ! rowspan="2" style="background: white" | Definition<br>of<br>coordinates
| |
| | <math>\begin{align}
| |
| \rho &= \sqrt{x^2+y^2} \\
| |
| \phi &= \arctan(y/x) \\
| |
| z &= z \end{align}</math>
| |
| | <math>\begin{align}
| |
| x &= \rho\cos\phi \\
| |
| y &= \rho\sin\phi \\
| |
| z &= z \end{align}</math>
| |
| | <math>\begin{align}
| |
| x &= r\sin\theta\cos\phi \\
| |
| y &= r\sin\theta\sin\phi \\
| |
| z &= r\cos\theta \end{align}</math>
| |
| | <math>\begin{align}
| |
| x &= \sigma \tau\\
| |
| y &= \tfrac{1}{2} \left( \tau^{2} - \sigma^{2} \right) \\
| |
| z &= z \end{align}</math>
| |
| |- align="center"
| |
| | <math>\begin{align}
| |
| r &= \sqrt{x^2+y^2+z^2} \\
| |
| \theta &= \arccos(z/r)\\
| |
| \phi &= \arctan(y/x) \end{align}</math>
| |
| | <math>\begin{align}
| |
| r &= \sqrt{\rho^2 + z^2} \\
| |
| \theta &= \arctan{(\rho/z)}\\
| |
| \phi &= \phi \end{align}</math>
| |
| | <math>\begin{align}
| |
| \rho &= r\sin\theta \\
| |
| \phi &= \phi\\
| |
| z &= r\cos\theta \end{align}</math>
| |
| | <math>\begin{align}
| |
| \rho\cos\phi &= \sigma \tau\\
| |
| \rho\sin\phi &= \tfrac{1}{2} \left( \tau^{2} - \sigma^{2} \right) \\
| |
| z &= z \end{align}</math>
| |
| | |
| <!-- Definition of unit vectors -->
| |
| |- align="center"
| |
| ! rowspan="2" style="background: white" | Definition<br>of<br>unit<br>vectors
| |
| | <math>\begin{align}
| |
| \hat{\boldsymbol\rho} &= \frac{ x \hat{\mathbf x} + y \hat{\mathbf y}}{\sqrt{x^2+y^2}} \\
| |
| \hat{\boldsymbol\phi} &= \frac{- y \hat{\mathbf x} + x \hat{\mathbf y}}{\sqrt{x^2+y^2}} \\
| |
| \hat{\mathbf z} &= \hat{\mathbf z}
| |
| \end{align}</math>
| |
| | <math>\begin{align}
| |
| \hat{\mathbf x} &= \cos\phi\hat{\boldsymbol\rho} - \sin\phi\hat{\boldsymbol\phi} \\
| |
| \hat{\mathbf y} &= \sin\phi\hat{\boldsymbol\rho} + \cos\phi\hat{\boldsymbol\phi} \\
| |
| \hat{\mathbf z} &= \hat{\mathbf z}
| |
| \end{align}</math>
| |
| | <math>\begin{align}
| |
| \hat{\mathbf x} &= \sin\theta\cos\phi\hat{\boldsymbol r} + \cos\theta\cos\phi\hat{\boldsymbol\theta}-\sin\phi\hat{\boldsymbol\phi} \\
| |
| \hat{\mathbf y} &= \sin\theta\sin\phi\hat{\boldsymbol r} + \cos\theta\sin\phi\hat{\boldsymbol\theta}+\cos\phi\hat{\boldsymbol\phi} \\
| |
| \hat{\mathbf z} &= \cos\theta \hat{\boldsymbol r} - \sin\theta \hat{\boldsymbol\theta}
| |
| \end{align}</math>
| |
| | <math>\begin{align}
| |
| \hat{\boldsymbol\sigma} &= \frac{\tau \hat{\mathbf x} - \sigma \hat{\mathbf y}}{\sqrt{\tau^2+\sigma^2}} \\
| |
| \hat{\boldsymbol\tau} &= \frac{\sigma \hat{\mathbf x} + \tau \hat{\mathbf y}}{\sqrt{\tau^2+\sigma^2}} \\
| |
| \hat{\mathbf z} &= \hat{\mathbf z}
| |
| \end{align}</math>
| |
| |- align="center"
| |
| | <math>\begin{align}
| |
| \hat{\mathbf r} &= \frac{x \hat{\mathbf x} + y \hat{\mathbf y} + z \hat{\mathbf z}}{\sqrt{x^2+y^2+z^2}} \\
| |
| \hat{\boldsymbol\theta} &= \frac{x z \hat{\mathbf x} + y z \hat{\mathbf y} - \left(x^2 + y^2\right) \hat{\mathbf z}}{\sqrt{x^2+y^2} \sqrt{x^2+y^2+z^2}} \\
| |
| \hat{\boldsymbol\phi} &= \frac{- y \hat{\mathbf x} + x \hat{\mathbf y}}{\sqrt{x^2+y^2}}
| |
| \end{align}</math>
| |
| | <math>\begin{align}
| |
| \hat{\mathbf r} &= \frac{\rho \hat{\boldsymbol\rho} + z \hat{\mathbf z}}{\sqrt{\rho^2 +z^2}} \\
| |
| \hat{\boldsymbol\theta} &= \frac{ z \hat{\boldsymbol\rho} - \rho \hat{\mathbf z}}{\sqrt{\rho^2 +z^2}} \\
| |
| \hat{\boldsymbol\phi} &= \hat{\boldsymbol\phi}
| |
| \end{align}</math>
| |
| | <math>\begin{align}
| |
| \hat{\boldsymbol\rho} &= \sin\theta \hat{\mathbf r} + \cos\theta \hat{\boldsymbol\theta} \\
| |
| \hat{\boldsymbol\phi} &= \hat{\boldsymbol\phi} \\
| |
| \hat{\mathbf z} &= \cos\theta \hat{\mathbf r} - \sin\theta \hat{\boldsymbol\theta}
| |
| \end{align}</math>
| |
| | <math>\begin{matrix}
| |
| \end{matrix}</math>
| |
| | |
| <!-- Definition of A -->
| |
| |- align="center"
| |
| ! style="background: white" | A [[vector field]] <math>\mathbf A</math>
| |
| | <math>A_x \hat{\mathbf x} + A_y \hat{\mathbf y} + A_z \hat{\mathbf z}</math>
| |
| | <math>A_\rho \hat{\boldsymbol\rho} + A_\phi \hat{\boldsymbol\phi} + A_z \hat{\mathbf z}</math>
| |
| | <math>A_r \hat{\boldsymbol r} + A_\theta \hat{\boldsymbol\theta} + A_\phi \hat{\boldsymbol\phi}</math>
| |
| | <math>A_\sigma \hat{\boldsymbol\sigma} + A_\tau \hat{\boldsymbol\tau} + A_\phi \hat{\mathbf z}</math>
| |
| | |
| <!-- grad f -->
| |
| |- align="center"
| |
| ! style="background: white" | [[Gradient]] <math>\nabla f</math>
| |
| | <math>{\partial f \over \partial x}\hat{\mathbf x} + {\partial f \over \partial y}\hat{\mathbf y}
| |
| + {\partial f \over \partial z}\hat{\mathbf z}</math>
| |
| | <math>{\partial f \over \partial \rho}\hat{\boldsymbol \rho}
| |
| + {1 \over \rho}{\partial f \over \partial \phi}\hat{\boldsymbol \phi}
| |
| + {\partial f \over \partial z}\hat{\mathbf z}</math>
| |
| | <math>{\partial f \over \partial r}\hat{\boldsymbol r}
| |
| + {1 \over r}{\partial f \over \partial \theta}\hat{\boldsymbol \theta}
| |
| + {1 \over r\sin\theta}{\partial f \over \partial \phi}\hat{\boldsymbol \phi}</math>
| |
| | <math> \frac{1}{\sqrt{\sigma^{2} + \tau^{2}}} {\partial f \over \partial \sigma}\hat{\boldsymbol \sigma} + \frac{1}{\sqrt{\sigma^{2} + \tau^{2}}} {\partial f \over \partial \tau}\hat{\boldsymbol \tau} + {\partial f \over \partial z}\hat{\mathbf z}</math>
| |
| | |
| <!-- div A -->
| |
| |- align="center"
| |
| ! style="background: white" | [[Divergence]] <math>\nabla \cdot \mathbf{A}</math>
| |
| | <math>{\partial A_x \over \partial x} + {\partial A_y \over \partial y} + {\partial A_z \over \partial z}</math>
| |
| | <math>{1 \over \rho}{\partial \left( \rho A_\rho \right) \over \partial \rho}
| |
| + {1 \over \rho}{\partial A_\phi \over \partial \phi}
| |
| + {\partial A_z \over \partial z}</math>
| |
| | <math>{1 \over r^2}{\partial \left( r^2 A_r \right) \over \partial r}
| |
| + {1 \over r\sin\theta}{\partial \over \partial \theta} \left( A_\theta\sin\theta \right)
| |
| + {1 \over r\sin\theta}{\partial A_\phi \over \partial \phi}</math>
| |
| | <math> \frac{1}{\sigma^{2} + \tau^{2}}\left({\partial (\sqrt{\sigma^2+\tau^2} A_\sigma) \over \partial \sigma} + {\partial (\sqrt{\sigma^2+\tau^2} A_\tau) \over \partial \tau}\right) + {\partial A_z \over \partial z}</math>
| |
| | |
| <!-- curl A -->
| |
| |- align="center"
| |
| ! style="background: white" | [[Curl (mathematics)|Curl]] <math>\nabla \times \mathbf{A}</math>
| |
| | <math>\begin{align}
| |
| \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) &\hat{\mathbf x} + \\
| |
| + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) &\hat{\mathbf y} + \\
| |
| + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) &\hat{\mathbf z}
| |
| \end{align}</math>
| |
| | <math>\begin{align}
| |
| \left(
| |
| \frac{1}{\rho} \frac{\partial A_z}{\partial \phi}
| |
| - \frac{\partial A_\phi}{\partial z}
| |
| \right) &\hat{\boldsymbol \rho} \\
| |
| + \left(
| |
| \frac{\partial A_\rho}{\partial z}
| |
| - \frac{\partial A_z}{\partial \rho}
| |
| \right) &\hat{\boldsymbol \phi} \\
| |
| + \frac{1}{\rho} \left(
| |
| \frac{\partial \left(\rho A_\phi\right)}{\partial \rho}
| |
| - \frac{\partial A_\rho}{\partial \phi}
| |
| \right) &\hat{\mathbf z}
| |
| \end{align}</math>
| |
| | <math>\begin{align}
| |
| \frac{1}{r\sin\theta} \left(
| |
| \frac{\partial}{\partial \theta} \left(A_\phi\sin\theta \right)
| |
| - \frac{\partial A_\theta}{\partial \phi}
| |
| \right) &\hat{\boldsymbol r} \\
| |
| + \frac{1}{r} \left(
| |
| \frac{1}{\sin\theta} \frac{\partial A_r}{\partial \phi}
| |
| - \frac{\partial}{\partial r} \left( r A_\phi \right)
| |
| \right) &\hat{\boldsymbol \theta} \\
| |
| + \frac{1}{r} \left(
| |
| \frac{\partial}{\partial r} \left( r A_\theta \right)
| |
| - \frac{\partial A_r}{\partial \theta}
| |
| \right) &\hat{\boldsymbol \phi}
| |
| \end{align}</math>
| |
| | <math>\begin{align}
| |
| \left(
| |
| \frac{1}{\sqrt{\sigma^2 + \tau^2}} \frac{\partial A_z}{\partial \tau}
| |
| - \frac{\partial A_\tau}{\partial z}
| |
| \right) &\hat{\boldsymbol \sigma} \\
| |
| - \left(
| |
| \frac{1}{\sqrt{\sigma^2 + \tau^2}} \frac{\partial A_z}{\partial \sigma}
| |
| - \frac{\partial A_\sigma}{\partial z}
| |
| \right) &\hat{\boldsymbol \tau} \\
| |
| + \frac{1}{\sqrt{\sigma^2 + \tau^2}} \left(
| |
| \frac{\partial \left(\sqrt{\sigma^2 + \tau^2} A_\sigma \right)}{\partial \tau}
| |
| - \frac{\partial \left(\sqrt{\sigma^2 + \tau^2} A_\tau \right)}{\partial \sigma}
| |
| \right) &\hat{\mathbf z}
| |
| \end{align}</math>
| |
| | |
| <!-- Laplacian f -->
| |
| |- align="center"
| |
| ! style="background: white" | [[Laplace operator]] <math>\Delta f \equiv \nabla^2 f</math>
| |
| | <math>{\partial^2 f \over \partial x^2} + {\partial^2 f \over \partial y^2} + {\partial^2 f \over \partial z^2}</math>
| |
| | <math>{1 \over \rho}{\partial \over \partial \rho}\left(\rho {\partial f \over \partial \rho}\right)
| |
| + {1 \over \rho^2}{\partial^2 f \over \partial \phi^2}
| |
| + {\partial^2 f \over \partial z^2}</math>
| |
| | <math>{1 \over r^2}{\partial \over \partial r}\!\left(r^2 {\partial f \over \partial r}\right)
| |
| \!+\!{1 \over r^2\!\sin\theta}{\partial \over \partial \theta}\!\left(\sin\theta {\partial f \over \partial \theta}\right)
| |
| \!+\!{1 \over r^2\!\sin^2\theta}{\partial^2 f \over \partial \phi^2}</math>
| |
| | <math> \frac{1}{\sigma^{2} + \tau^{2}}
| |
| \left( \frac{\partial^{2} f}{\partial \sigma^{2}} +
| |
| \frac{\partial^{2} f}{\partial \tau^{2}} \right) +
| |
| \frac{\partial^{2} f}{\partial z^{2}}
| |
| </math>
| |
| | |
| <!-- vector Laplacian A -->
| |
| |- align="center"
| |
| ! style="background: white" | [[Vector Laplacian]] <math>\Delta \mathbf{A} \equiv \nabla^2 \mathbf{A}</math>
| |
| | <math>\Delta A_x \hat{\mathbf x} + \Delta A_y \hat{\mathbf y} + \Delta A_z \hat{\mathbf z} </math>
| |
| | {{Collapsible section |content =
| |
| <math>\begin{align}
| |
| \mathopen{}\left(\Delta A_\rho - \frac{A_\rho}{\rho^2} - \frac{2}{\rho^2} \frac{\partial A_\phi}{\partial \phi}\right)\mathclose{} &\hat{\boldsymbol\rho} \\
| |
| + \mathopen{}\left(\Delta A_\phi - \frac{A_\phi}{\rho^2} + \frac{2}{\rho^2} \frac{\partial A_\rho}{\partial \phi}\right)\mathclose{} &\hat{\boldsymbol\phi} \\
| |
| + \Delta A_z &\hat{\mathbf z}
| |
| \end{align}</math>
| |
| }}
| |
| | align="center" | {{Collapsible section |content =
| |
| <math>\begin{align}
| |
| \left(\Delta A_r - \frac{2 A_r}{r^2}
| |
| - \frac{2}{r^2\sin\theta} \frac{\partial \left(A_\theta \sin\theta\right)}{\partial\theta}
| |
| - \frac{2}{r^2\sin\theta}{\frac{\partial A_\phi}{\partial \phi}}\right) &\hat{\boldsymbol r} \\
| |
| + \left(\Delta A_\theta - \frac{A_\theta}{r^2\sin^2\theta}
| |
| + \frac{2}{r^2} \frac{\partial A_r}{\partial \theta}
| |
| - \frac{2 \cos\theta}{r^2\sin^2\theta} \frac{\partial A_\phi}{\partial \phi}\right) &\hat{\boldsymbol\theta} \\
| |
| + \left(\Delta A_\phi - \frac{A_\phi}{r^2\sin^2\theta}
| |
| + \frac{2}{r^2\sin\theta} \frac{\partial A_r}{\partial \phi}
| |
| + \frac{2 \cos\theta}{r^2\sin^2\theta} \frac{\partial A_\theta}{\partial \phi}\right) &\hat{\boldsymbol\phi}
| |
| \end{align}</math>
| |
| }}
| |
| | |
| <!-- Material derivative (A dot del)B -->
| |
| |- align="center"
| |
| ! style="background: white" | [[Material derivative]]<ref name="Mathworld">{{cite web |url=http://mathworld.wolfram.com/ConvectiveOperator.html|title=Convective Operator |author=Weisstein, Eric W. |date= |work=Mathworld |publisher= |accessdate=23 March 2011}}</ref>
| |
| <math>(\mathbf{A} \cdot \nabla) \mathbf{B}</math>
| |
| <!-- Cartesian -->
| |
| | {{Collapsible section |content =
| |
| <math>\begin{align}
| |
| \left(A_x \frac{\partial B_x}{\partial x} + A_y \frac{\partial B_x}{\partial y} + A_z \frac{\partial B_x}{\partial z}\right) &\hat{\mathbf{x}} \\
| |
| + \left(A_x \frac{\partial B_y}{\partial x} + A_y \frac{\partial B_y}{\partial y} + A_z \frac{\partial B_y}{\partial z}\right) &\hat{\mathbf{y}} \\
| |
| + \left(A_x \frac{\partial B_z}{\partial x} + A_y \frac{\partial B_z}{\partial y} + A_z \frac{\partial B_z}{\partial z}\right) &\hat{\mathbf{z}}
| |
| \end{align}</math>
| |
| }}
| |
| <!-- Cylindrical \frac{\partial B_}{\partial } -->
| |
| | {{Collapsible section |content =
| |
| <math>\begin{align}
| |
| \left(A_\rho \frac{\partial B_\rho}{\partial \rho}+\frac{A_\phi}{\rho}\frac{\partial B_\rho}{\partial \phi}+A_z\frac{\partial B_\rho}{\partial z}-\frac{A_\phi B_\phi}{\rho}\right)
| |
| &\hat{\boldsymbol\rho} \\
| |
| + \left(A_\rho \frac{\partial B_\phi}{\partial \rho} + \frac{A_\phi}{\rho}\frac{\partial B_\phi}{\partial \phi} + A_z\frac{\partial B_\phi}{\partial z} + \frac{A_\phi B_\rho}{\rho}\right)
| |
| &\hat{\boldsymbol\phi}\\
| |
| + \left(A_\rho \frac{\partial B_z}{\partial \rho}+\frac{A_\phi}{\rho}\frac{\partial B_z}{\partial \phi}+A_z\frac{\partial B_z}{\partial z}\right)
| |
| &\hat{\mathbf z}
| |
| \end{align}</math>
| |
| }}
| |
| <!-- Sp -->
| |
| | align="center" | {{Collapsible section |content =
| |
| <math>\begin{align}
| |
| \left(
| |
| A_r \frac{\partial B_r}{\partial r}
| |
| + \frac{A_\theta}{r} \frac{\partial B_r}{\partial \theta}
| |
| + \frac{A_\phi}{r\sin\theta} \frac{\partial B_r}{\partial \phi}
| |
| - \frac{A_\theta B_\theta + A_\phi B_\phi}{r}
| |
| \right) &\hat{\boldsymbol r} \\
| |
| + \left(
| |
| A_r \frac{\partial B_\theta}{\partial r}
| |
| + \frac{A_\theta}{r} \frac{\partial B_\theta}{\partial \theta}
| |
| + \frac{A_\phi}{r\sin\theta} \frac{\partial B_\theta}{\partial \phi}
| |
| + \frac{A_\theta B_r}{r} - \frac{A_\phi B_\phi\cot\theta}{r}
| |
| \right) &\hat{\boldsymbol\theta} \\
| |
| + \left(
| |
| A_r \frac{\partial B_\phi}{\partial r}
| |
| + \frac{A_\theta}{r} \frac{\partial B_\phi}{\partial \theta}
| |
| + \frac{A_\phi}{r\sin\theta} \frac{\partial B_\phi}{\partial \phi}
| |
| + \frac{A_\phi B_r}{r}
| |
| + \frac{A_\phi B_\theta \cot\theta}{r}
| |
| \right) &\hat{\boldsymbol\phi}
| |
| \end{align}</math>
| |
| }}
| |
| | |
| <!-- Differentials displacement -->
| |
| |- align="center"
| |
| ! style="background: white" | Differential displacement
| |
| | <math>d\mathbf{l} = dx \, \hat{\mathbf x} + dy \, \hat{\mathbf y} + dz \, \hat{\mathbf z}</math>
| |
| | <math>d\mathbf{l} = d\rho \, \hat{\boldsymbol \rho} + \rho \, d\phi \, \hat{\boldsymbol \phi} + dz \, \hat{\mathbf z}</math>
| |
| | <math>d\mathbf{l} = dr \, \hat{\mathbf r} + r \, d\theta \, \hat{\boldsymbol \theta} + r \, \sin\theta \, d\phi \, \hat{\boldsymbol \phi}</math>
| |
| | <math>d\mathbf{l} = \sqrt{\sigma^2 + \tau^2} \, d\sigma \, \hat{\boldsymbol \sigma} + \sqrt{\sigma^2 + \tau^2} \, d\tau \, \hat{\boldsymbol \tau} + dz \, \hat{\mathbf z}</math>
| |
| | |
| <!-- Differentials normal area -->
| |
| |- align="center"
| |
| ! style="background: white" | Differential normal area <math>d \mathbf S</math>
| |
| | <math>\begin{align}
| |
| dy \, dz &\hat{\mathbf x} \\
| |
| + dx \, dz &\hat{\mathbf y} \\
| |
| + dx \, dy &\hat{\mathbf z}
| |
| \end{align}</math>
| |
| | <math>\begin{align}
| |
| \rho \, d\phi \, dz &\hat{\boldsymbol\rho} \\
| |
| + d\rho \, dz &\hat{\boldsymbol\phi} \\
| |
| + \rho \, d\rho \, d\phi &\hat{\mathbf z}
| |
| \end{align}</math>
| |
| | <math>\begin{align}
| |
| r^2 \sin\theta \, d\theta \, d\phi &\hat{\mathbf r} \\
| |
| + r \sin\theta \, dr \, d\phi &\hat{\boldsymbol\theta} \\
| |
| + r \, dr \, d\theta &\hat{\boldsymbol\phi}
| |
| \end{align}</math>
| |
| | <math>\begin{align}
| |
| \sqrt{\sigma^2 + \tau^2} \, d\tau \, dz &\hat{\boldsymbol\sigma} \\
| |
| + \sqrt{\sigma^2 + \tau^2} \, d\sigma \, dz &\hat{\boldsymbol\tau} \\
| |
| + \left(\sigma^2 + \tau^2\right) \, d\sigma \, d\tau &\hat{\mathbf z}
| |
| \end{align}</math>
| |
| | |
| <!-- Differentials volume --> | |
| |- align="center"
| |
| ! style="background: white" | Differential volume <math>dV</math>
| |
| | <math>dx \, dy \, dz</math>
| |
| | <math>\rho \, d\rho \, d\phi \, dz</math>
| |
| | <math>r^2 \sin\theta \, dr \, d\theta \, d\phi</math>
| |
| | <math>\left(\sigma^2 + \tau^2\right) d\sigma \, d\tau \, dz</math>
| |
| | |
| <!-- nabla's on nabla's -->
| |
| |-
| |
| | colspan=5 | <strong>Non-trivial calculation rules:</strong>
| |
| # <math>\operatorname{div} \, \operatorname{grad} f \equiv \nabla \cdot \nabla f = \nabla^2 f \equiv \Delta f</math>
| |
| # <math>\operatorname{curl} \, \operatorname{grad} f \equiv \nabla \times \nabla f = \mathbf 0</math> | |
| # <math>\operatorname{div} \, \operatorname{curl} \mathbf{A} \equiv \nabla \cdot (\nabla \times \mathbf{A}) = 0</math>
| |
| # <math>\operatorname{curl} \, \operatorname{curl} \mathbf{A} \equiv \nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}</math> ([[Triple_product#Vector_triple_product|Lagrange's formula]] for del)
| |
| # <math>\Delta (f g) = f \Delta g + 2 \nabla f \cdot \nabla g + g \Delta f</math>
| |
| |}
| |
| </div>
| |
| | |
| == See also ==
| |
| * [[Del]]
| |
| * [[Orthogonal coordinates]]
| |
| * [[Curvilinear coordinates]]
| |
| * [[Vector fields in cylindrical and spherical coordinates]]
| |
| | |
| == References ==
| |
| {{Reflist}}
| |
| | |
| == External links ==
| |
| * [http://www.csulb.edu/~woollett/ Maxima Computer Algebra system scripts] to generate some of these operators in cylindrical and spherical coordinates.
| |
| | |
| [[Category:Vector calculus]]
| |
| [[Category:Coordinate systems]]
| |