|
|
Line 1: |
Line 1: |
| In [[mathematics]], the '''gluing axiom''' is introduced to define what a [[sheaf (mathematics)|sheaf]] ''F'' on a [[topological space]] ''X'' must satisfy, given that it is a [[presheaf]], which is by definition a [[contravariant functor]]
| | == Louboutin Pas Cher 15-16-374775 == |
|
| |
|
| :''F'': ''O''(''X'') → ''C''
| | At the moment, Miller's team is nearing the end of the data collection phase. "Participants are invited to a three hour testing session [http://www.laburbuja.ch/logs/error.php?p=louboutin-pas-cher Louboutin Pas Cher] where we ask them to use five IVR systems, followed by a battery of [http://www.voldirect.aero/chaussure-louboutin-pas-chere/ Chaussure Louboutin Pas Chere] memory and cognitive functioning tests. "We are examining [http://gboservice.com.ua/brand.asp?p=christian-louboutin-pas-cher-chaussures Christian Louboutin Pas Cher Chaussures] the most common [http://gboservice.com.ua/brand.asp?p=louboutin-escarpin-pas-cher Louboutin Escarpin Pas Cher] difficulties older people face when they interact with IVR systems [http://www.voldirect.aero/chaussure-louboutin-femme-pas-cher/ Chaussure Louboutin Femme Pas Cher] and are trying to link these difficulties to their [http://www.laburbuja.ch/logs/error.php?p=louboutin-pas-chere Louboutin Pas Chere] cognitive and memory abilities," says Miller.. <br><br>Just as Father [http://www.voldirect.aero/escarpins-louboutins-pas-cher/ Escarpins Louboutins Pas Cher] Guigues is considered the founder of the University and Father Tabaret its builder, Father Guindon is recognized as the catalyst responsible for profound institutional change, the driving force that saw the University ushered into modern times. As the leader of the University, he brought about dramatic transformation. He laid the foundation that has allowed us to become one of the Canada's leading public universities. <br><br>J'en ai une dizaine dans le style spartiates:avec ou sans petits talons, montantes ou basses,certaines avec des brillants ou des clous imprimés, ou même avec des lanières de cuir qui montent sur la jambe. J'en ai de toutes les couleurs:noir blanc beige bleu bronze argent. On en trouve pour pas cher il y a beaucoup de choix et quel sentiment de liberté!!! Je ne peux plus sortir sans sandalettes sauf quand je rentre dans ma ville d'origine. <br><br>D'origine canadienne, l'entreprise McCain est fondée en 1957 par deux frères, Harrison et Wallace McCain, à Florenceville, dans la province de New Brunswick. [http://www.laburbuja.ch/logs/error.php?p=christian-louboutin-pas-chere Christian Louboutin Pas Chere] Dès les années 1960, les [http://www.laburbuja.ch/logs/error.php?p=louboutin-pas-cher.femme-chaussures Louboutin Pas Cher.Femme Chaussures] produits McCain conquièrent les marchés [http://www.laburbuja.ch/logs/error.php?p=ou-trouver-des-louboutin-pas-cher Ou Trouver Des Louboutin Pas Cher] britannique et australien. La marque se déploie ensuite rapidement dans le monde entier. [http://www.voldirect.aero/boutique-louboutin-pas-cher/ Boutique Louboutin Pas Cher] <br><br>Combien de fois on a fait l en tout? Un couple [http://www.laburbuja.ch/logs/error.php?p=louboutin-daffodile-pas-cher Louboutin Daffodile Pas Cher] expérimente la passion amoureuse : dans cette adaptation d nouvelle de l William Faulkner, publiée en 1938, la Française Séverine Chavrier fait le choix d mise en scène contemporaine. Sa puissante composition d prend toutefois le risque d le texte. Corps nus, matelas envahissant [http://www.voldirect.aero/louboutin-basket-pas-cher/ Louboutin Basket Pas Cher] le plateau comme pour former un monochrome sur lequel . <br><br>La Dre Tsai est neurochirurgienne à l'Hôpital d'Ottawa et scientifique adjointe à l'Institut de recherche de l'Hôpital d'Ottawa. Elle enseigne à la Division de neurochirurgie [http://www.voldirect.aero/louboutin-france-pas-cher/ Louboutin France Pas Cher] du Département de chirurgie, Faculté de médecine. Elle a également publié plusieurs ouvrages en neurochirurgie et reçu de nombreux prix, y compris celui des 40 personnes [http://gboservice.com.ua/brand.asp?p=chaussure-homme-louboutin-pas-cher Chaussure Homme Louboutin Pas Cher] de moins de 40 ans les plus influentes du Canada (Top 40 under 40) et le Young Clinician Investigator Award (prix du jeune clinicien chercheur) de l'American Association of Neurological Surgeons..<ul> |
| | | |
| to a category ''C'' which initially one takes to be the [[category of sets]]. Here ''O''(''X'') is the [[partial order]] of [[open set]]s of ''X'' ordered by [[inclusion map]]s; and considered as a category in the standard way, with a unique [[morphism]]
| | <li>[http://bbs.189joy.com/forum.php?mod=viewthread&tid=1388876&extra= Louboutin Basket Pas Cher 15-17-384721]</li> |
| | | |
| :''U'' → ''V'' | | <li>[http://maximum.room.ne.jp/bbs/yami/yybbs.cgi Louboutins Homme Pas Cher 15-]</li> |
| | | |
| if ''U'' is a [[subset]] of ''V'', and none otherwise.
| | <li>[http://lib.ougz.com.cn/site/?action-viewnews-itemid-2 Louboutin Sneakers Femme Pas Cher 15-17-384719]</li> |
| | | |
| As phrased in the [[Sheaf (mathematics)|sheaf]] article, there is a certain axiom that ''F'' must satisfy, for any [[open cover]] of an open set of ''X''. For example given open sets ''U'' and ''V'' with [[union (set theory)|union]] ''X'' and [[intersection (set theory)|intersection]] ''W'', the required condition is that
| | </ul> |
| | |
| :''F''(''X'') is the subset of ''F''(''U'')×''F''(''V'') with equal image in ''F''(''W''). | |
| | |
| In less formal language, a [[Section (category theory)|section]] ''s'' of ''F'' over ''X'' is equally well given by a pair of sections (''s''′,''s''′′) on ''U'' and ''V'' respectively, which 'agree' in the sense that ''s''′ and ''s''′′ have a common image in ''F''(''W'') under the respective restriction maps
| |
| | |
| :''F''(''U'') → ''F''(''W'') | |
| | |
| and
| |
| | |
| :''F''(''V'') → ''F''(''W'').
| |
| | |
| The first major hurdle in sheaf theory is to see that this ''gluing'' or ''patching'' axiom is a correct abstraction from the usual idea in geometric situations. For example, a [[vector field]] is a section of a [[tangent bundle]] on a [[smooth manifold]]; this says that a vector field on the union of two open sets is (no more and no less than) vector fields on the two sets that agree where they overlap.
| |
| | |
| Given this basic understanding, there are further issues in the theory, and some will be addressed here. A different direction is that of the [[Grothendieck topology]], and yet another is the logical status of 'local existence' (see [[Kripke–Joyal semantics]]).
| |
| | |
| ==Removing restrictions on ''C''==
| |
| To rephrase this definition in a way that will work in any category ''C'' that has sufficient structure, we note that we can write the objects and morphisms involved in the definition above in a diagram which we will call (G), for "gluing":
| |
| | |
| :<math>{\mathcal F}(U)\rightarrow\prod_i{\mathcal F}(U_i){{{} \atop \longrightarrow}\atop{\longrightarrow \atop {}}}\prod_{i,j}{\mathcal F}(U_i\cap U_j)</math>
| |
| | |
| Here the first map is the product of the restriction maps
| |
| | |
| :res<sub>''U'',''U<sub>i</sub>'',</sub>:''F(U)''→''F(U<sub>i</sub>)''
| |
| | |
| and each pair of arrows represents the two restrictions
| |
| | |
| :res<sub>''U<sub>i</sub>'',''U<sub>i</sub>''∩''U<sub>j</sub>''</sub>:''F(U<sub>i</sub>)''→''F(U<sub>i</sub>''∩''U<sub>j</sub>)'' | |
| | |
| and
| |
| | |
| :res<sub>''U<sub>j</sub>'',''U<sub>i</sub>''∩''U<sub>j</sub>''</sub>:''F(U<sub>j</sub>)''→''F(U<sub>i</sub>''∩''U<sub>j</sub>)''. | |
| | |
| It is worthwhile to note that these maps exhaust all of the possible restriction maps among ''U'', the ''U<sub>i</sub>'', and the ''U<sub>i</sub>''∩''U<sub>j</sub>''.
| |
| | |
| The condition for ''F'' to be a sheaf is exactly that ''F'' is the [[Limit (category theory)|limit]] of the diagram. This suggests the correct form of the gluing axiom:
| |
| | |
| :A presheaf ''F'' is a sheaf if for any open set ''U'' and any collection of open sets {''U<sub>i</sub>''}<sub>''i''∈''I''</sub> whose union is ''U'', ''F''(''U'') is the limit of the diagram (G) above. | |
| | |
| One way of understanding the gluing axiom is to notice that "un-applying" ''F'' to (G) yields the following diagram:
| |
| | |
| :<math>\coprod_{i,j}U_i\cap U_j{{{} \atop \longrightarrow}\atop{\longrightarrow \atop {}}}\coprod_iU_i\rightarrow U</math>
| |
| | |
| Here ''U'' is the [[colimit]] of this diagram. The gluing axiom says that ''F'' turns colimits of such diagrams into limits.
| |
| | |
| ==Sheaves on a basis of open sets==
| |
| In some categories, it is possible to construct a sheaf by specifying only some of its sections. Specifically, let ''X'' be a topological space with [[basis of a topological space|basis]] {''B''<sub>''i''</sub>}<sub>''i''∈''I''</sub>. We can define a category ''O'' ′(''X'') to be the full subcategory of ''O''(''X'') whose objects are the {''B''<sub>''i''</sub>}. A '''B-sheaf''' on ''X'' with values in '''C''' is a contravariant functor
| |
| | |
| :''F'': ''O'' ′(''X'') → '''C''' | |
| | |
| which satisfies the gluing axiom for sets in ''O'' ′(''X''). We would like to recover the values of ''F'' on the other objects of ''O''(''X'').
| |
| | |
| To do this, note that for each open set ''U'', we can find a collection {''B''<sub>''j''</sub>}<sub>''j''∈''J''</sub> whose union is ''U''. Categorically speaking, ''U'' is the colimit of the {''B''<sub>''j''</sub>}<sub>''j''∈''J''</sub>. Since ''F'' is contravariant, we define ''F''(''U'') to be the limit of the {''F''(''B'')}<sub>''j''∈''J''</sub>. (Here we must assume that this limit exists in '''C'''.) It can be shown that this new object agrees with the old ''F'' on each basic open set, and that it is a sheaf.
| |
| | |
| ==The logic of ''C''==
| |
| The first needs of sheaf theory were for sheaves of [[abelian group]]s; so taking the category ''C'' as the [[category of abelian groups]] was only natural. In applications to geometry, for example [[complex manifold]]s and [[algebraic geometry]], the idea of a ''sheaf of [[local ring]]s'' is central. This, however, is not quite the same thing; one speaks instead of a [[locally ringed space]], because it is not true, except in trite cases, that such a sheaf is a functor into a [[category of local rings]]. It is the ''stalks'' of the sheaf that are local rings, not the collections of ''sections'' (which are [[ring (mathematics)|rings]], but in general are not close to being ''local''). We can think of a locally ringed space ''X'' as a parametrised family of local rings, depending on ''x'' in ''X''.
| |
| | |
| A more careful discussion dispels any mystery here. One can speak freely of a sheaf of abelian groups, or rings, because those are [[algebraic structure]]s (defined, if one insists, by an explicit [[signature (logic)|signature]]). Any category ''C'' having [[product (category theory)|finite product]]s supports the idea of a [[group object]], which some prefer just to call a group ''in'' ''C''. In the case of this kind of purely algebraic structure, we can talk ''either'' of a sheaf having values in the category of abelian groups, or an ''abelian group in the category of sheaves of sets''; it really doesn't matter.
| |
| | |
| In the local ring case, it does matter. At a foundational level we must use the second style of definition, to describe what a local ring means in a category. This is a logical matter: axioms for a local ring require use of [[existential quantification]], in the form that for any ''r'' in the ring, one of ''r'' and 1 − ''r'' is [[invertible]]. This allows one to specify what a 'local ring in a category' should be, in the case that the category supports enough structure.
| |
| | |
| ==Sheafification== | |
| To turn a given presheaf ''P'' into a sheaf ''F'', there is a standard device called '''''sheafification''''' or '''''sheaving'''''. The rough intuition of what one should do, at least for a presheaf of sets, is to introduce an equivalence relation, which makes equivalent data given by different covers on the overlaps by refining the covers. One approach is therefore to go to the [[Stalk_of_a_sheaf#Stalks_of_a_sheaf|stalk]]s and recover the [[sheaf space]] of the ''best possible'' sheaf ''F'' produced from ''P''.
| |
| | |
| This use of language strongly suggests that we are dealing here with [[adjoint functors]]. Therefore it makes sense to observe that the sheaves on ''X'' form a [[full subcategory]] of the presheaves on ''X''. Implicit in that is the statement that a [[morphism of sheaves]] is nothing more than a [[natural transformation]] of the sheaves, considered as functors. Therefore we get an abstract characterisation of sheafification as [[left adjoint]] to the inclusion. In some applications, naturally, one does need a description.
| |
| | |
| In more abstract language, the sheaves on ''X'' form a [[reflective subcategory]] of the presheaves (Mac Lane-[[Ieke Moerdijk|Moerdijk]] ''Sheaves in Geometry and Logic'' p. 86). In [[topos theory]], for a [[Lawvere-Tierney topology]] and its sheaves, there is an analogous result (ibid. p. 227).
| |
| | |
| ==Other gluing axioms==
| |
| The gluing axiom of sheaf theory is rather general. One can note that the [[Mayer-Vietoris axiom]] of [[homotopy theory]], for example, is a special case.
| |
| | |
| {{DEFAULTSORT:Gluing Axiom}}
| |
| [[Category:General topology]]
| |
| [[Category:Limits (category theory)]]
| |
| [[Category:Homological algebra]]
| |
| [[Category:Mathematical axioms]]
| |
| [[Category:Differential topology]]
| |
Louboutin Pas Cher 15-16-374775
At the moment, Miller's team is nearing the end of the data collection phase. "Participants are invited to a three hour testing session Louboutin Pas Cher where we ask them to use five IVR systems, followed by a battery of Chaussure Louboutin Pas Chere memory and cognitive functioning tests. "We are examining Christian Louboutin Pas Cher Chaussures the most common Louboutin Escarpin Pas Cher difficulties older people face when they interact with IVR systems Chaussure Louboutin Femme Pas Cher and are trying to link these difficulties to their Louboutin Pas Chere cognitive and memory abilities," says Miller..
Just as Father Escarpins Louboutins Pas Cher Guigues is considered the founder of the University and Father Tabaret its builder, Father Guindon is recognized as the catalyst responsible for profound institutional change, the driving force that saw the University ushered into modern times. As the leader of the University, he brought about dramatic transformation. He laid the foundation that has allowed us to become one of the Canada's leading public universities.
J'en ai une dizaine dans le style spartiates:avec ou sans petits talons, montantes ou basses,certaines avec des brillants ou des clous imprimés, ou même avec des lanières de cuir qui montent sur la jambe. J'en ai de toutes les couleurs:noir blanc beige bleu bronze argent. On en trouve pour pas cher il y a beaucoup de choix et quel sentiment de liberté!!! Je ne peux plus sortir sans sandalettes sauf quand je rentre dans ma ville d'origine.
D'origine canadienne, l'entreprise McCain est fondée en 1957 par deux frères, Harrison et Wallace McCain, à Florenceville, dans la province de New Brunswick. Christian Louboutin Pas Chere Dès les années 1960, les Louboutin Pas Cher.Femme Chaussures produits McCain conquièrent les marchés Ou Trouver Des Louboutin Pas Cher britannique et australien. La marque se déploie ensuite rapidement dans le monde entier. Boutique Louboutin Pas Cher
Combien de fois on a fait l en tout? Un couple Louboutin Daffodile Pas Cher expérimente la passion amoureuse : dans cette adaptation d nouvelle de l William Faulkner, publiée en 1938, la Française Séverine Chavrier fait le choix d mise en scène contemporaine. Sa puissante composition d prend toutefois le risque d le texte. Corps nus, matelas envahissant Louboutin Basket Pas Cher le plateau comme pour former un monochrome sur lequel .
La Dre Tsai est neurochirurgienne à l'Hôpital d'Ottawa et scientifique adjointe à l'Institut de recherche de l'Hôpital d'Ottawa. Elle enseigne à la Division de neurochirurgie Louboutin France Pas Cher du Département de chirurgie, Faculté de médecine. Elle a également publié plusieurs ouvrages en neurochirurgie et reçu de nombreux prix, y compris celui des 40 personnes Chaussure Homme Louboutin Pas Cher de moins de 40 ans les plus influentes du Canada (Top 40 under 40) et le Young Clinician Investigator Award (prix du jeune clinicien chercheur) de l'American Association of Neurological Surgeons..