Mott insulator: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Kmarinas86
No edit summary
en>BG19bot
m WP:CHECKWIKI error fix for #61. Punctuation goes before References. Do general fixes if a problem exists. - using AWB (10497)
 
Line 1: Line 1:
{{Redirect|Plasma gun|the science-fiction weapon|plasma weapon (fiction)}}
Nice to meet you, I am Marvella Shryock. One of the issues she loves most is to do aerobics and now she is attempting to make cash with it. Years ago we moved to North Dakota and I love each day living right here. Supervising is my profession.<br><br>Look at my blog ... [http://www.fuguporn.com/user/RMitchell www.fuguporn.com]
A '''dense plasma focus''' ('''DPF''') is a machine that produces, by [[Electromagnetism|electromagnetic]] acceleration and compression, a short-lived [[Plasma (physics)|plasma]] that is hot and dense enough to cause [[nuclear fusion]] and the emission of X-rays and neutrons.  The electromagnetic compression of the plasma is called a ''[[pinch (plasma physics)|pinch]]''.  It was invented in the early 1960s by J.W.&nbsp;Mather and also independently by N.V.&nbsp;Filippov in 1954.<ref>Petrov DP, NV Filippov, TI Filippova, VA Khrabrov "Powerful pulsed gas discharge in the cells with conducting walls." In the Sun. Plasma physics and controlled thermonuclear reactions. Ed. Academy of Sciences of the USSR, 1958, т. 4, с. 170-181.</ref> The plasma focus is similar to the ''high-intensity plasma gun device'' (HIPGD) (or just ''plasma gun''), which ejects plasma in the form of a [[plasmoid]], without pinching it.
 
==Applications==
When operated using [[deuterium]], intense bursts of [[X-ray]]s and charged particles are emitted, as are [[nuclear fusion]] byproducts including [[neutron]]s.<ref>{{cite journal | url= http://www.iop.org/EJ/abstract/0741-3335/42/10/302
| title= Correlated deuteron energy spectra and neutron yield for a 3 kJ plasma focus
| last= Springham | first= S V | coauthors= S Lee and M S Rafique
| journal= [[Plasma Physics and Controlled Fusion]] | volume= 42 | issue= 10 | pages= 1023–1032
|date=October 2000 | doi= 10.1088/0741-3335/42/10/302
| accessdate= 2009-01-08 |bibcode = 2000PPCF...42.1023S }}</ref> There is ongoing research that demonstrates potential applications as a soft X-ray source<ref>{{cite journal | url= http://www.iop.org/EJ/abstract/1402-4896/57/4/003
| title= A Powerful Soft X-ray Source for X-ray Lithography Based on Plasma Focusing
| last= Bogolyubov | first= E P | coauthors= ''et al.''
| journal= [[Physica Scripta]] | volume= 57 | issue= 4 | pages= 488–494
| year= 1970
| doi= 10.1088/0031-8949/57/4/003
| accessdate= 2009-01-08 |bibcode = 1998PhyS...57..488B }}</ref> for next-generation [[microelectronics]] [[lithography]], [[surface micromachining]], pulsed X-ray and [[neutron]] source for medical and security inspection applications and materials modification,<ref>{{cite journal | url= http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JAPIAU000095000012007725000001&idtype=cvips&gifs=yes
| title= Effect of energetic ion irradiation on {{chem|CdI|2}} films
| last= Rawat | first= R. S. | coauthors= P. Arun, A. G. Vedeshwar, P. Lee
| journal= [[Journal of Applied Physics]] | volume= 95 | issue= 12 | page= 7725
| date= 15&nbsp;June 2004 | doi= 10.1063/1.1738538
| accessdate= 2009-01-08 |arxiv = cond-mat/0408092 |bibcode = 2004JAP....95.7725R }}</ref> among others.
 
For [[nuclear weapons]] applications, dense plasma focus devices can be used as an external [[neutron source]].<ref>[[U.S. Department of Defense]], Militarily Critical Technologies List, Part II: Weapons of Mass Destruction Technologies (February 1998) [http://www.fas.org/irp/threat/mctl98-2/p2sec05.pdf Section&nbsp;5. Nuclear Weapons Technology] ([[PDF]]), Table&nbsp;5.6-2, p.&nbsp;II-5-66. Retrieved on 8&nbsp;January 2009.</ref> Other applications include simulation of nuclear explosions (for testing of the electronic equipment) and a short and intense neutron source useful for non-contact discovery or inspection of nuclear materials (uranium, plutonium).
 
==Positive characteristics==
An important characteristic of the dense plasma focus is that the [[energy density]] of the focused plasma is practically a constant over the whole range of machines, from sub-kilojoule machines to megajoule machines, when these machines are tuned for optimal operation. This means that a small table-top-sized plasma focus machine produces essentially the same plasma characteristics (temperature and density) as the largest plasma focus. Of course the larger machine will produce the larger volume of focused plasma with a corresponding longer lifetime and more radiation yield.
 
Even the smallest plasma focus has essentially the same dynamic characteristics as larger machines, producing the same plasma characteristics and the same radiation products. This is due to the [[Plasma scaling|scalability of plasma]] phenomena.
 
See also [[plasmoid]], the self-contained magnetic plasma ball that may be produced by a dense plasma focus.
 
==Operation==
 
A charged bank of [[electrical capacitor]]s is switched onto the anode. The gas within the reaction chamber breaks down and a rapidly rising [[electric current]] flows across the backwall [[electrical insulator]], axisymmetrically, as depicted by the path (labeled 1) as shown in Fig.&nbsp;1. The [[axisymmetric]] sheath of plasma current lifts off the insulator due to the interaction of the current with its own magnetic field ([[Lorentz force]]). The plasma sheath is accelerated axially, to position&nbsp;2, and then to position&nbsp;3, ending the axial phase of the device.
 
The whole process proceeds at many times the [[speed of sound]] in the ambient gas. As the current sheath continues to move axially, the portion in contact with the anode slides across the face of the anode, axisymmetrically. When the imploding front of the [[shock wave]] coalesces onto the axis, a reflected shock front emanates from the axis until it meets the driving current sheath which then forms the axisymmetric boundary of the pinched, or focused, hot plasma column.
 
The dense plasma column (akin to the [[Z-pinch]]) rapidly [[pinch (plasma physics)|pinch]]es and undergoes instabilities and breaks up. The intense electromagnetic radiation and particle bursts, collectively referred to as ''multi-radiation'' occur during the dense plasma and breakup phases. These critical phases last typically tens of [[nanoseconds]] for a small (kJ, 100&nbsp;kA) focus machine to around a [[microsecond]] for a large (MJ, several&nbsp;MA) focus machine.
 
The whole process, including axial and radial phases, may last, for the Mather DPF machine, a few microseconds (for a small focus) to 10&nbsp;microseconds for a larger focus machine. A Filippov focus machine has a very short axial phase compared to a Mather focus.
 
==Design parameters==
The fact that the plasma energy density is constant throughout the range of plasma focus devices, from big to small, is related to the value of a design parameter that needs to be kept at a certain value if the plasma focus is to operate efficiently. The critical 'speed' design parameter is <math>\scriptstyle \frac{I}{a\sqrt{p}}</math><!-- removed the confusing duplication without math markup as (I/a)/p^1/2-->, or the current linear density divided by the square root of the mass density of the fill gas.<ref>{{cite journal | url= http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=533118
| title= Dimensions and lifetime of the plasma focus pinch
| last= Lee | first= Sing | coauthors= Serban, A.
| journal= [[IEEE Transactions on Plasma Science]] | volume= 24 | issue= 3 | pages= 1101–1105
|date=June 1996 | doi= 10.1109/27.533118 | issn= 0093-3813
| accessdate= 2009-01-08 |bibcode = 1996ITPS...24.1101L }}</ref>
 
For example for neutron-optimised operation in deuterium the value of this critical parameter, experimentally observed over a range of machines from kilojoules to hundreds of kilojoules, is:  9&nbsp;kA/(mm·Torr<sup>0.5</sup>), or 780&nbsp;kA/(m·Pa<sup>0.5</sup>), with a remarkably small deviation of 10% over such a large range of sizes of machines.
 
Thus if we have a peak current of 180&nbsp;kA we require an anode radius of 10&nbsp;mm with a deuterium fill pressure of {{convert|4|Torr|Pa|abbr=on}}. The length of the anode has then to be matched to the risetime of the capacitor current in order to allow an average axial transit speed of the current sheath of just over 50&nbsp;mm/μs. Thus a capacitor risetime of 3&nbsp;μs requires a matched anode length of 160&nbsp;mm.
 
The above example of peak current of 180&nbsp;kA rising in 3&nbsp;µs, anode radius and length of respectively 10 and 160&nbsp;mm are close to the design parameters of the UNU/ICTP PFF (United Nations University/International Centre for Theoretical Physics Plasma Fusion Facility).<ref>Lee, S and Zakaullah, M et al. and Srivastava, M P and Gholap, A V et al. and Eissa, M A and Moo, S P et al. (1988) [http://eprints.ictp.it/31/ ''Twelve Years of UNU/ICTP PFF- A Review'']. IC, 98 (231). Abdus Salam ICTP, Miramare, Trieste. Retrieved on 8&nbsp;January 2009.</ref> This small table-top device was designed as a low-cost integrated experimental system for training and transfer to initiate/strengthen experimental plasma research in developing countries.<ref>{{cite journal | url= http://eprints.ictp.it/273/
| title= Initiating and Strengthening Plasma Research in Developing Countries
| last= Lee | first= Sing | coauthors= Wong, Chiow San
| journal= [[Physics Today]] | volume= 59 | issue= 5 | pages= 31–36
| year= 2006 | month=  | issn= 0031-9228
| accessdate= 2009-01-08 }}</ref>
 
==Current research==
A network of ten identical DPF machines operates in eight countries around the world. This network produces  research papers on topics including machine optimization & diagnostics (soft x-rays, neutrons, electron and ion beams), applications (microlithography, micromachining, materials modification and fabrication, imaging & medical, astrophysical simulation) as well as modeling & computation. The network was organized by Sing Lee in 1986 and is coordinated by the Asian African Association for Plasma Training, [[AAAPT]]. A simulation package, the Lee Model,<ref>http://www.google.com/search?sourceid=navclient&ie=UTF-8&rls=SUNA,SUNA:2006-17,SUNA:en&q=lee+model+plasma+focus</ref> has been developed for this network but is applicable to all plasma focus devices. The code typically produces excellent agreement between computed and measured results,<ref>{{cite web | url= http://www.intimal.edu.my/school/fas/UFLF/
| title= Universal Plasma Focus Laboratory Facility at INTI-UC
|date=  24 November 2008 |publisher= [[INTI University College]] (INTI-UC) [[Malaysia]].
| accessdate= 2009-01-08 }}</ref> and is available for downloading as a Universal Plasma Focus Laboratory Facility. The Institute for Plasma Focus Studies IPFS<ref>{{cite web | url= http://www.plasmafocus.net
| title= Institute for Plasma Focus Studies
|date= 19 November 2008 |work= |publisher=
| accessdate= 2009-01-08 }}</ref>  was founded on 25&nbsp;February 2008 to promote correct and innovative use of the Lee Model code and to encourage the application of plasma focus numerical experiments. IPFS research has already extended numerically-derived neutron scaling laws to multi-megajoule experiments.<ref>[http://www.intimal.edu.my/school/fas/UFLF/Papers/PP5PublishedPPCF%2050%282008%29%20105005.pdf] (PDF) {{Dead link|date=January 2009}}</ref>  These await verification. Numerical experiments with the code have also resulted in the compilation of a global scaling law indicating that the well-known neutron saturation effect is better correlated to a scaling deterioration mechanism. This is due to the increasing dominance of the axial phase dynamic resistance as capacitor bank impedance decreases with increasing bank energy (capacitance). In principle, the resistive saturation could be overcome by operating the pulse power system at a higher voltage.
 
The [http://www.icdmp.pl/ International Centre for Dense Magnetised Plasmas (ICDMP)] in Warsaw Poland, operates several plasma focus machines for an international research and training programme. Among these machines is one with energy capacity of 1&nbsp;MJ making it one of the largest plasma focus devices in the world.
 
In Argentina there is an Inter-institutional Program for Plasma Focus Research since 1996, coordinated by a National Laboratory of Dense Magnetized Plasmas ([http://www.pladema.net www.pladema.net]) in Tandil, Buenos Aires. The Program also cooperates with the Chilean Nuclear Energy Commission, and networks the Argentine National Energy Commission, the Scientific Council of Buenos Aires, the University of Center, the University of Mar del Plata, The University of Rosario, and the Institute of Plasma Physics of the University of Buenos Aires. The program operates six Plasma Focus Devices, developing applications, in particular ultra-short tomography and substance detection by neutron pulsed interrogation. Chile currently operates the facility SPEED-2, the largest Plasma Focus facility of the southern hemisphere. PLADEMA also contributed during the last decade with several mathematical models of Plasma Focus. The thermodynamic model was able to develop for the first time design maps combining geometrical and operational parameters, showing that there is always an optimum gun length and charging pressure which maximize the neutron emission. Currently there is a complete finite-elements code validated against numerous experiments, which can be used confidently as a design tool for Plasma Focus.
 
Since the beginning of 2009, a number of new plasma focus machines have been/are being commissioned including the INTI Plasma Focus in Malaysia, the NX3 in Singapore and the first plasma focus to be commissioned in a US university in recent times, the KSU Plasma Focus at Kansas State University which recorded its first fusion neutron emitting pinch on New Year's Eve 2009.
 
===Fusion power===
Several groups have controversially proposed that [[fusion power]] based on the DPF could be economically viable, possibly even with [[Aneutronic fusion|low-neutron fuel cycles]] like p-B11. The feasibility of net power from p-B11 in the DPF requires that the [[bremsstrahlung]] losses be reduced by quantum mechanical effects induced by the powerful magnetic field. The high magnetic field will also result in a high rate of emission of [[cyclotron radiation]], but at the densities envisioned, where the [[plasma frequency]] is larger than the [[cyclotron frequency]], most of this power will be reabsorbed before being lost from the plasma. Another advantage claimed is the capability of [[Fusion power#Subsystems|direct conversion]] of the energy of the fusion products into electricity, with an efficiency potentially above 70%. Experiments and computer simulations to investigate the capability of DPF for fusion power are underway at Lawrenceville Plasma Physics (LPP) under the direction of [[Eric Lerner]], who explained his "Focus Fusion" approach in a 2007 Google Tech Talk.<ref>{{cite web | url= http://video.google.com/videoplay?docid=-1518007279479871760
| title= Focus Fusion: The Fastest Route to Cheap, Clean Energy
| last= Lerner | first= Eric | authorlink= Eric Lerner
|date= 3 October 2007 | format= video  |work= [[Google TechTalks]] |publisher= [[Google]]
| accessdate= 2009-01-08 }}</ref>  On November&nbsp;14, 2008, Lerner received funding for continued research, to test the scientific feasibility of Focus Fusion.<ref>{{cite web | url= http://www.lawrencevilleplasmaphysics.com/index.php?pr=News
| title= LPP Receives Major Investments, Initiates Experimental Project
| date= November 22, 2008 | publisher= [[Lawrenceville Plasma Physics]], Inc.
| accessdate= 2009-01-08 }}</ref> On October 15, 2009, the DPF device "Focus Fusion-1" achieved its first pinch.<ref>{{cite web | url= http://www.lawrencevilleplasmaphysics.com/index.php?option=com_lyftenbloggie&view=entry&category=news&id=8%3Afocus-fusion-1-works&Itemid=90 | title= Focus-Fusion-1 Works! First shots and first pinch achieved October 15, 2009. 
| date= October;15, 2009 | publisher= [[Lawrenceville Plasma Physics]], Inc.
| accessdate= 2009-10-18 }}</ref>  On January 28, 2011, LPP published initial results including experimental shots with considerably higher fusion yields than the historical DPF trend.<ref>{{cite web | url= http://www.springerlink.com/content/q14675418618w910/ | title= Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus 
| date= January;28, 2011 | publisher= [[Journal of Fusion Energy]]
| accessdate= 2011-02-01 }}</ref> In March, 2012, the company announced that it had achieved temperatures of 1.8 billion degrees, beating the old record of 1.1 billion that had survived since 1978.<ref>{{cite journal|last=Lerner|first=Eric J.|coauthors=S. Krupakar Murali, Derek Shannon, Aaron M. Blake and Fred Van Roessel|title=Fusion reactions from >150 keV ions in a dense plasma focus plasmoid|journal=Physics of Plasmas|date=23 March 2012|volume=19|issue=3|doi=10.1063/1.3694746|url=http://dx.doi.org/10.1063/1.3694746|accessdate=8 December 2013}}</ref><ref>{{cite news|last=Halper|first=Mark|title=Fusion breakthrough|url=http://www.smartplanet.com/blog/intelligent-energy/fusion-breakthrough/14516|accessdate=1 April 2012|newspaper=Smart PLanet|date=March 28, 2012}}</ref>
 
==See also==
*[[List of plasma (physics) articles]]
 
==History==
*1958: Петров Д.П., Филиппов Н.В., Филиппова Т.И., Храбров В.А. "Мощный импульсный газовый разряд в камерах с проводящими стенками". В сб. Физика плазмы и проблемы управляемых термоядерных реакций. Изд. АН СССР, 1958, т. 4, с. 170-181.
*1958: [[Hannes Alfvén]]: Proceedings of the Second International Conference on Peaceful Uses of Atomic Energy (United Nations), 31, 3
*1960: H Alfven, L Lindberg and P Mitlid, "[http://www.iop.org/EJ/abstract/0368-3281/1/3/302/ Experiments with plasma rings]" (1961) ''Journal of Nuclear Energy''. Part&nbsp;C, Plasma Physics, Accelerators, Thermonuclear Research, Volume&nbsp;1, Issue&nbsp;3, pp.&nbsp;116–120
*1960: Lindberg, L., E. Witalis and C. T. Jacobsen, "Experiments with plasma rings" (1960) ''Nature'' 185:452.
*1961: Hannes Alfvén: Plasma Ring Experiment in "[http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1961ApJ...133.1049A On the Origin of Cosmic Magnetic Fields]" (1961) ''Astrophysical Journal'', vol.&nbsp;133, p.&nbsp;1049
*1961: Lindberg, L. & Jacobsen, C., "[http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1961ApJ...133.1043L&amp;db_key=AST&amp;data_type=HTML&amp;format=&amp;high=42ca922c9c03926 On the Amplification of the Poloidal Magnetic Flux in a Plasma]" (1961) ''Astrophysical Journal'', vol.&nbsp;133, p.&nbsp;1043
*1962: Filippov. N.V., et al., "Dense, High-Temperature Plasma in a Noncylindrical 2-pinch Compression" (1962) 'Nuclear Fusion Supplement'. Pt.&nbsp;2, 577
*1969: Buckwald, Robert Allen, "Dense Plasma Focus Formation by Disk Symmetry" (1969) [[Thesis]], [[Ohio State University]].
 
==Notes==
{{reflist|2}}
 
==External links==
* [http://www.plasmafocus.net Institute for Plasma Focus Studies (IPFS)].
* Research papers published in 2011 by IPFS staff. [http://www.plasmafocus.net/IPFS/2011papers/0%202011%20Papers.htm]
*The Plasma Focus-Trending into the Future([http://www.plasmafocus.net/IPFS/2011papers/PFtrendingintotheFuture%20.DOC])
*Dimensions and Lifetime of the Plasma Focus ([http://www.plasmafocus.net/IPFS/otherpapers/DimLifePF96.pdf])
* [http://ckplee.myplace.nie.edu.sg/plasmaphysics/ Plasma Radiation Source Lab at the National Institute of Education in Singapore]
* [http://www.icdmp.pl/pf1000.html Plasma Focus Laboratory, International Centre for Dense Magnetised Plasmas, Warsaw, Poland]
* [http://www.fis.puc.cl/~plasma/  Optics and Plasma Physics Group,Pontificia Universidad Católica de Chile]
* Paper by Leopoldo Soto ([http://www.cchen.cl/index.php?option=com_content&task=category&sectionid=11&id=111&Itemid=71 Chilean Nuclear Energy Commission, Thermonucluar Plasma Department]): [http://stacks.iop.org/PPCF/47/A361 New trends and future perspectives on plasma focus research]
* [http://www.focusfusion.org/ Focus Fusion Society]
* Abdus Salam ICTP Plasma Focus Laboratory. [http://mlab.ictp.it/plasma/pfd.html]
* Numerical Simulation Package: Universal Plasma Focus Laboratory Facility at INTI-UC. [http://www.intimal.edu.my/school/fas/UFLF/]
* [http://www.pladema.net Dense Plasma Focus Network in Argentina].
* Research papers published in 2011 by IPFS staff. [http://www.plasmafocus.net/IPFS/2011papers/0%202011%20Papers.htm]
* [http://www.fusionenergy.net.au  Fusion Energy Site with links].
* [http://video.google.com/videoplay?docid=-1518007279479871760&emb=1&hl=en Google talk by Eric J. Lerner, President of Lawrenceville Plasma Physics and Executive Director of the Focus Fusion Society]
 
{{Fusion methods}}
{{Nuclear fusion reactors}}
 
{{DEFAULTSORT:Dense Plasma Focus}}
<!--Categories-->
[[Category:Plasma physics]]
[[Category:Fusion power]]
[[Category:Neutron sources]]

Latest revision as of 09:47, 5 December 2014

Nice to meet you, I am Marvella Shryock. One of the issues she loves most is to do aerobics and now she is attempting to make cash with it. Years ago we moved to North Dakota and I love each day living right here. Supervising is my profession.

Look at my blog ... www.fuguporn.com