|
|
Line 1: |
Line 1: |
| [[Image:Gummel-Poon1.png|thumb|450px|Schematic of Spice Gummel-Poon Model NPN]]
| | Hello. Allow me introduce the [http://peak.hosting.bizfree.kr/xe/?document_srl=247364 peak.hosting.bizfree.kr] author. Her title is Emilia Shroyer but it's not [http://dns125.dolzer.at/?q=node/696 home std test] the most female title out there. Years in the past we moved to [http://Www.channel4embarrassingillnesses.com/men-in-white-coats/genital-herpes/symptoms/ Puerto Rico] and my family members enjoys it. To play baseball is the hobby he will never quit at home std test doing. [http://Sacramento.Cbslocal.com/2013/08/26/sacramento-county-to-offer-home-std-tests-for-chlamydia-gonorrhea/ Bookkeeping] at home std test is her day occupation now.<br><br>Also visit my blog; [http://computerrepairredlands.com/solid-advice-terms-candida-albicans/ http://computerrepairredlands.com/solid-advice-terms-candida-albicans/] |
| The '''Gummel–Poon model''' is a [[Transistor models|model]] of the [[bipolar junction transistor]]. It was first described in a paper published by [[Hermann Gummel]] and [[H. C. Poon]] at [[Bell Labs]] in 1970.<ref name=gummel>H. K. Gummel and H. C. Poon, "An integral charge control model of bipolar transistors", ''Bell Syst. Tech. J.'', vol. 49, pp. 827–852, May–June 1970</ref>
| |
| | |
| The Gummel–Poon model and modern variants of it are widely used via incorporation in the popular circuit simulators known as [[SPICE]]. A significant effect included in the Gummel–Poon model is the [[direct current]] variation of the transistor <math> \beta_\mathrm{F}</math> and <math> \beta_\mathrm{R}</math>. When certain parameters are omitted, the Gummel–Poon model reduces to the simpler [[Bipolar junction transistor#Ebers–Moll_model|Ebers–Moll model]].<ref name=gummel/>
| |
| | |
| ==Model parameters==
| |
| | |
| Spice Gummel–Poon model parameters
| |
| | |
| {| class="wikitable sortable"
| |
| |-
| |
| !#!!Name!!Property<br />Modeled!!Parameter!!Units!!Default<br />Value
| |
| |-
| |
| |1||IS||current||transport saturation current||A||1.00E-016
| |
| |-
| |
| |2||BF||current||ideal max forward beta||-||100
| |
| |-
| |
| |3||NF||current||forward current emission coefficient||-||1
| |
| |-
| |
| |4||VAF||current||forward Early voltage||V||inf
| |
| |-
| |
| |5||IKF||current||corner for forward beta high current roll-off||A||inf
| |
| |-
| |
| |6||ISE||current||B-E leakage saturation current||A||0
| |
| |-
| |
| |7||NE||current||B-E leakage emission coefficient||-||1.5
| |
| |-
| |
| |8||BR||current||ideal max reverse beta||-||1
| |
| |-
| |
| |9||NR||current||reverse current emission coefficient||-||1
| |
| |-
| |
| |10||VAR||current||reverse Early voltage||V||inf
| |
| |-
| |
| |11||IKR||current||corner for reverse beta high current roll-off||A||inf
| |
| |-
| |
| |12||ISC||current||B-C leakage saturation current||A||0
| |
| |-
| |
| |13||NC||current||B-C leakage emission coefficient||-||2
| |
| |-
| |
| |14||RB||resistance||zero-bias base resistance||ohms||0
| |
| |-
| |
| |15||IRB||resistance||current where base resistance falls half-way to its minimum||A||inf
| |
| |-
| |
| |16||RBM||resistance||minimum base resistance at high currents||ohms||RB
| |
| |-
| |
| |17||RE||resistance||emitter resistance||ohms||0
| |
| |-
| |
| |18||RC||resistance||collector resistance||ohms||0
| |
| |-
| |
| |19||CJE||capacitance||B-E zero-bias depletion capacitance||F||0
| |
| |-
| |
| |20||VJE||capacitance||B-E built-in potential||V||0.75
| |
| |-
| |
| |21||MJE||capacitance||B-E junction exponential factor||-||0.33
| |
| |-
| |
| |22||TF||capacitance||ideal forward transit time||s||0
| |
| |-
| |
| |23||XTF||capacitance||coefficient for bias dependence of TF||-||0
| |
| |-
| |
| |24||VTF||capacitance||voltage describing VBC dependence of TF||V||inf
| |
| |-
| |
| |25||ITF||capacitance||high-current parameter for effect on TF||A||0
| |
| |-
| |
| |26||PTF||||excess phase at freq=1.0/(TF*2PI) Hz||deg||0
| |
| |-
| |
| |27||CJC||capacitance||B-C zero-bias depletion capacitance||F||0
| |
| |-
| |
| |28||VJC||capacitance||B-C built-in potential||V||0.75
| |
| |-
| |
| |29||MJC||capacitance||B-C junction exponential factor||-||0.33
| |
| |-
| |
| |30||XCJC||capacitance||fraction of B-C depletion capacitance connected to internal base node||-||1
| |
| |-
| |
| |31||TR||capacitance||ideal reverse transit time||s||0
| |
| |-
| |
| |32||CJS||capacitance||zero-bias collector-substrate capacitance||F||0
| |
| |-
| |
| |33||VJS||capacitance||substrate junction built-in potential||V||0.75
| |
| |-
| |
| |34||MJS||capacitance||substrate junction exponential factor||-||0
| |
| |-
| |
| |35||XTB||||forward and reverse beta temperature exponent||-||0
| |
| |-
| |
| |36||EG||||energy gap for temperature effect of IS||eV||1.1
| |
| |-
| |
| |37||XTI||||temperature exponent for effect of IS||-||3
| |
| |-
| |
| |38||KF||||flicker-noise coefficient||-||0
| |
| |-
| |
| |39||AF||||flicker-noise exponent||-||1
| |
| |-
| |
| |40||FC||||coefficient for forward-bias depletion capacitance formula||-||0.5
| |
| |-
| |
| |41||TNOM||||parameter measurement temperature||deg.C||27
| |
| |} <ref>http://virtual.cvut.cz/dynlabmodules/ihtml/dynlabmodules/semicond/node48.html Summary of model with schematics and equations</ref>
| |
| | |
| ==References==
| |
| | |
| {{reflist}}
| |
| | |
| ==External links==
| |
| * [http://www.alcatel-lucent.com/bstj/vol49-1970/articles/bstj49-5-827.pdf An Integral Charge Control Model of Bipolar Transistors] manuscript
| |
| * [http://www.alcatel-lucent.com/bstj/vol49-1970/bstj-vol49-issue05.html Bell System Technical Journal, v49: i5 May-June 1970]
| |
| * [http://virtual.cvut.cz/dynlabmodules/ihtml/dynlabmodules/semicond/node48.html Summary of model with schematics and equations]
| |
| * [http://www.electronics.oulu.fi/Opetus/ELJK/JUTUT/GP_DOCU.pdf Agilent manual: The Gummel–Poon Bipolar Model] as implemented in the simulator SPICE
| |
| * [http://www.designers-guide.org/VBIC/documents/ted00.pdf Designers-Guide.org comparison paper] Xiaochong Cao, J. McMacken, K. Stiles, P. Layman, Juin J. Liou, Adelmo Ortiz-Conde, and S. Moinian, "Comparison of the New VBIC and Conventional Gummel–Poon Bipolar Transistor Models," IEEE Trans-ED 47 #2, Feb. 2000.
| |
| * [http://virtual.cvut.cz/dynlabmodules/ihtml/dynlabmodules/semicond/node48.html The spice Gummel-Poon model] online Course on modeling and simulation.
| |
| | |
| {{DEFAULTSORT:Gummel-Poon model}}
| |
| [[Category:Transistor modeling]]
| |
| | |
| [[de:Ersatzschaltungen des Bipolartransistors#Gummel-Poon-Modell]]
| |
Hello. Allow me introduce the peak.hosting.bizfree.kr author. Her title is Emilia Shroyer but it's not home std test the most female title out there. Years in the past we moved to Puerto Rico and my family members enjoys it. To play baseball is the hobby he will never quit at home std test doing. Bookkeeping at home std test is her day occupation now.
Also visit my blog; http://computerrepairredlands.com/solid-advice-terms-candida-albicans/