|
|
Line 1: |
Line 1: |
| {{electromagnetism|cTopic=[[Covariant formulation of classical electromagnetism|Covariant formulation]]}}
| | The author is recognized by the title of Numbers Lint. She is a librarian but she's always wanted her personal company. over the counter [http://richlinked.com/index.php?do=/profile-32092/info/ std home test] [http://Www.Netdoctor.Co.uk/diseases/facts/genitalwarts.htm test South] Dakota is her beginning location but she needs to move simply because of her family. Playing baseball is the hobby he will std [http://theoffshoremanual.com/?testimonial=know-facing-candida-albicans home std test kit] test by over the [http://www.tressugar.com/How-Common-STDs-America-7492582 counter std] test no means quit doing.<br><br>Here is my web blog: [http://www.escuelavirtual.registraduria.gov.co/user/view.php?id=140944&course=1 http://www.escuelavirtual.registraduria.gov.co/user/view.php?id=140944&course=1] |
| | |
| In [[physics]], the '''electromagnetic stress–energy tensor''' is the portion of the [[stress–energy tensor]] due to the [[electromagnetic field]].<ref>Gravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ISBN 0-7167-0344-0</ref>
| |
| | |
| == Definition ==
| |
| | |
| === SI units ===
| |
| | |
| In free space and flat space-time, the electromagnetic stress–energy [[tensor]] in [[SI units]] is<ref>Gravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ISBN 0-7167-0344-0</ref>
| |
| | |
| :<math>T^{\mu\nu} = \frac{1}{\mu_0} \left[ F^{\mu \alpha}F^\nu_{\ \alpha} - \frac{1}{4} \eta^{\mu\nu}F_{\alpha\beta} F^{\alpha\beta}\right] \,.</math> | |
| | |
| where <math>F^{\mu\nu}</math> is the [[electromagnetic tensor]]. This expression is when using a metric of signature (-,+,+,+). If using the metric with signature (+,-,-,-), the expression for <math>T^{\mu \nu}</math> will have opposite sign.
| |
| | |
| Explicitly in matrix form:
| |
| | |
| :<math>T^{\mu\nu} =\begin{bmatrix} \frac{1}{2}\left(\epsilon_0 E^2+\frac{1}{\mu_0}B^2\right) & S_x/c & S_y/c & S_z/c \\
| |
| S_x/c & -\sigma_{xx} & -\sigma_{xy} & -\sigma_{xz} \\
| |
| S_y/c & -\sigma_{yx} & -\sigma_{yy} & -\sigma_{yz} \\
| |
| S_z/c & -\sigma_{zx} & -\sigma_{zy} & -\sigma_{zz} \end{bmatrix},</math>
| |
| | |
| where <math>\eta_{\mu\nu}</math> is the [[Metric_tensor_(general_relativity)#Flat_spacetime|Minkowski metric tensor]] of [[metric signature]] (−+++),
| |
| | |
| :<math>\bold{S}=\frac{1}{\mu_0}\bold{E}\times\bold{B},</math> | |
| | |
| is the [[Poynting vector]],
| |
| | |
| :<math>\sigma_{ij} = \epsilon_0 E_i E_j + \frac{1}
| |
| {{\mu _0 }}B_i B_j - \frac{1}{2} \left( \epsilon_0 E^2 + \frac{1}{\mu _0}B^2 \right)\delta _{ij}. </math>
| |
| | |
| is the [[Maxwell stress tensor]], and ''c'' is the [[speed of light]].
| |
| | |
| === CGS units ===
| |
| | |
| The [[permittivity of free space]] and [[permeability of free space]] in [[Gaussian units|cgs-Gaussian units]] are
| |
| | |
| :<math>\epsilon_0=\frac{1}{4\pi},\quad \mu_0=4\pi\,</math> | |
| | |
| then:
| |
| | |
| :<math>T^{\mu\nu} = \frac{1}{4\pi} [ F^{\mu\alpha}F^{\nu}{}_{\alpha} - \frac{1}{4} \eta^{\mu\nu}F_{\alpha\beta}F^{\alpha\beta}] \,.</math>
| |
| | |
| and in explicit matrix form:
| |
| | |
| :<math>T^{\mu\nu} =\begin{bmatrix} \frac{1}{8\pi}(E^2+B^2) & S_x/c & S_y/c & S_z/c \\ S_x/c & -\sigma_{xx} & -\sigma_{xy} & -\sigma_{xz} \\
| |
| S_y/c & -\sigma_{yx} & -\sigma_{yy} & -\sigma_{yz} \\
| |
| S_z/c & -\sigma_{zx} & -\sigma_{zy} & -\sigma_{zz} \end{bmatrix}</math>
| |
| | |
| where [[Poynting vector]] becomes:
| |
| | |
| :<math>\bold{S}=\frac{c}{4\pi}\bold{E}\times\bold{B}. </math>
| |
| | |
| The stress–energy tensor for an electromagnetic field in a [[dielectric]] medium is less well understood and is the subject of the unresolved [[Abraham–Minkowski controversy]].<ref>however see Pfeifer et al., Rev. Mod. Phys. 79, 1197 (2007)</ref>
| |
| | |
| The element <math>T^{\mu\nu}\!</math> of the stress–energy tensor represents the flux of the μ<sup>th</sup>-component of the [[four-momentum]] of the electromagnetic field, <math>P^{\mu}\!</math>, going through a [[hyperplane]] (<math> x^{\nu}</math> is constant). It represents the contribution of electromagnetism to the source of the gravitational field (curvature of space-time) in [[general relativity]].
| |
| | |
| ==Algebraic properties==
| |
| This tensor has several noteworthy algebraic properties. First, it is a [[symmetric tensor]]:
| |
| | |
| :<math>T^{\mu\nu}=T^{\nu\mu}</math>
| |
| | |
| Second, the tensor <math>T^{\nu}_{\ \alpha}</math> is [[Trace (linear algebra)|traceless]]:
| |
| | |
| :<math>T^{\alpha}_{\ \alpha}= 0</math>.
| |
| | |
| Third, the energy density is [[Positive-definite function|positive-definite]]:
| |
| | |
| :<math>T^{00}>0</math>
| |
| | |
| These three algebraic properties have varying importance in the context of modern physics, and they remove or reduce ambiguity of the definition of the electromagnetic stress-energy tensor. The symmetry of the tensor is important in [[General Relativity]], because the [[Einstein tensor]] is symmetric. The tracelessness is regarded as important for the masslessness of the [[photon]].<ref>Garg, Anupam. ''Classical Electromagnetism in a Nutshell'', p. 564 (Princeton University Press, 2012).</ref>
| |
| | |
| == Conservation laws == | |
| | |
| {{main|Conservation laws}}
| |
| | |
| The electromagnetic stress–energy tensor allows a compact way of writing the [[conservation laws]] of linear [[momentum]] and [[energy]] in electromagnetism. The divergence of the stress energy tensor is:
| |
| | |
| :<math>\partial_\nu T^{\mu \nu} + \eta^{\mu \rho} \, f_\rho = 0 \,</math> | |
| | |
| where <math>f_\rho</math> is the (3D) [[Lorentz force]] per unit volume on [[matter]].
| |
| | |
| This equation is equivalent to the following 3D conservation laws
| |
| | |
| :<math>\frac{\partial u_\mathrm{em}}{\partial t} + \bold{\nabla} \cdot \bold{S} + \bold{J} \cdot \bold{E} = 0 \,</math>
| |
| | |
| :<math>\frac{\partial \bold{p}_\mathrm{em}}{\partial t} - \bold{\nabla}\cdot \sigma + \rho \bold{E} + \bold{J} \times \bold{B} = 0 \,</math>
| |
| | |
| respectively describing the flux of electromagnetic energy density
| |
| | |
| :<math>u_\mathrm{em} = \frac{\epsilon_0}{2}E^2 + \frac{1}{2\mu_0}B^2 \,</math>
| |
| | |
| and electromagnetic momentum density
| |
| | |
| :<math>\bold{p}_\mathrm{em} = {\bold{S} \over {c^2}} </math>
| |
| | |
| where '''J''' is the [[electric current density]] and ''ρ'' the [[electric charge density]].
| |
| | |
| ==See also== | |
| *[[Ricci calculus]]
| |
| *[[Covariant formulation of classical electromagnetism]]
| |
| *[[Mathematical descriptions of the electromagnetic field]]
| |
| *[[Maxwell's equations]]
| |
| *[[Maxwell's equations in curved spacetime]]
| |
| *[[General relativity]]
| |
| *[[Einstein field equations]]
| |
| *[[Magnetohydrodynamics]]
| |
| *[[vector calculus]]
| |
| | |
| ==References==
| |
| | |
| {{reflist}}
| |
| | |
| {{DEFAULTSORT:Electromagnetic stress-energy tensor}}
| |
| [[Category:Tensors]]
| |
| [[Category:Electromagnetism]]
| |