Spectral theory of compact operators: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
en>Cengke Shi
 
Line 1: Line 1:
{{electromagnetism|cTopic=[[Covariant formulation of classical electromagnetism|Covariant formulation]]}}
The author is recognized by the title of Numbers Lint. She is a librarian but she's always wanted her personal company. over the counter [http://richlinked.com/index.php?do=/profile-32092/info/ std home test] [http://Www.Netdoctor.Co.uk/diseases/facts/genitalwarts.htm test South] Dakota is her beginning location but she needs to move simply because of her family. Playing baseball is the hobby he will  std [http://theoffshoremanual.com/?testimonial=know-facing-candida-albicans home std test kit] test by  over the [http://www.tressugar.com/How-Common-STDs-America-7492582 counter std] test no means quit doing.<br><br>Here is my web blog: [http://www.escuelavirtual.registraduria.gov.co/user/view.php?id=140944&course=1 http://www.escuelavirtual.registraduria.gov.co/user/view.php?id=140944&course=1]
 
In [[physics]], the '''electromagnetic stress–energy tensor''' is the portion of the [[stress–energy tensor]] due to the [[electromagnetic field]].<ref>Gravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ISBN 0-7167-0344-0</ref>
 
== Definition ==
 
=== SI units ===
 
In free space and flat space-time, the electromagnetic stress–energy [[tensor]] in [[SI units]] is<ref>Gravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ISBN 0-7167-0344-0</ref>
 
:<math>T^{\mu\nu} = \frac{1}{\mu_0} \left[ F^{\mu \alpha}F^\nu_{\ \alpha} - \frac{1}{4} \eta^{\mu\nu}F_{\alpha\beta} F^{\alpha\beta}\right] \,.</math>
 
where <math>F^{\mu\nu}</math> is the [[electromagnetic tensor]]. This expression is when using a metric of signature (-,+,+,+). If using the metric with signature (+,-,-,-), the expression for <math>T^{\mu \nu}</math> will have opposite sign.
 
Explicitly in matrix form:
 
:<math>T^{\mu\nu} =\begin{bmatrix} \frac{1}{2}\left(\epsilon_0 E^2+\frac{1}{\mu_0}B^2\right) & S_x/c & S_y/c & S_z/c \\
S_x/c & -\sigma_{xx} & -\sigma_{xy} & -\sigma_{xz} \\
S_y/c & -\sigma_{yx} & -\sigma_{yy} & -\sigma_{yz} \\
S_z/c & -\sigma_{zx} & -\sigma_{zy} & -\sigma_{zz} \end{bmatrix},</math>
 
where <math>\eta_{\mu\nu}</math> is the [[Metric_tensor_(general_relativity)#Flat_spacetime|Minkowski metric tensor]] of [[metric signature]] (−+++),
 
:<math>\bold{S}=\frac{1}{\mu_0}\bold{E}\times\bold{B},</math>
 
is the [[Poynting vector]],
 
:<math>\sigma_{ij} = \epsilon_0 E_i E_j  + \frac{1}
{{\mu _0 }}B_i B_j - \frac{1}{2} \left( \epsilon_0 E^2  + \frac{1}{\mu _0}B^2 \right)\delta _{ij}. </math>
 
is the [[Maxwell stress tensor]], and ''c'' is the [[speed of light]].
 
=== CGS units ===
 
The [[permittivity of free space]] and [[permeability of free space]] in [[Gaussian units|cgs-Gaussian units]] are
 
:<math>\epsilon_0=\frac{1}{4\pi},\quad \mu_0=4\pi\,</math>
 
then:
 
:<math>T^{\mu\nu} = \frac{1}{4\pi} [ F^{\mu\alpha}F^{\nu}{}_{\alpha} - \frac{1}{4} \eta^{\mu\nu}F_{\alpha\beta}F^{\alpha\beta}] \,.</math>
 
and in explicit matrix form:
 
:<math>T^{\mu\nu} =\begin{bmatrix} \frac{1}{8\pi}(E^2+B^2) & S_x/c & S_y/c & S_z/c \\ S_x/c & -\sigma_{xx} & -\sigma_{xy} & -\sigma_{xz} \\
S_y/c & -\sigma_{yx} & -\sigma_{yy} & -\sigma_{yz} \\
S_z/c & -\sigma_{zx} & -\sigma_{zy} & -\sigma_{zz} \end{bmatrix}</math>
 
where [[Poynting vector]] becomes:  
 
:<math>\bold{S}=\frac{c}{4\pi}\bold{E}\times\bold{B}. </math>
 
The stress–energy tensor for an electromagnetic field in a [[dielectric]] medium is less well understood and is the subject of the unresolved [[Abraham–Minkowski controversy]].<ref>however see Pfeifer et al., Rev. Mod. Phys. 79, 1197 (2007)</ref>
 
The element <math>T^{\mu\nu}\!</math> of the stress–energy tensor represents the flux of the μ<sup>th</sup>-component of the [[four-momentum]] of the electromagnetic field, <math>P^{\mu}\!</math>, going through a [[hyperplane]] (<math> x^{\nu}</math> is constant). It represents the contribution of electromagnetism to the source of the gravitational field (curvature of space-time) in [[general relativity]].
 
==Algebraic properties==
This tensor has several noteworthy algebraic properties.  First, it is a [[symmetric tensor]]:
 
:<math>T^{\mu\nu}=T^{\nu\mu}</math>  
 
Second, the tensor <math>T^{\nu}_{\ \alpha}</math> is [[Trace (linear algebra)|traceless]]:
 
:<math>T^{\alpha}_{\ \alpha}= 0</math>.
 
Third, the energy density is [[Positive-definite function|positive-definite]]:
 
:<math>T^{00}>0</math>
 
These three algebraic properties have varying importance in the context of modern physics, and they remove or reduce ambiguity of the definition of the electromagnetic stress-energy tensor.  The symmetry of the tensor is important in [[General Relativity]], because the [[Einstein tensor]] is symmetric.  The tracelessness is regarded as important for the masslessness of the [[photon]].<ref>Garg, Anupam. ''Classical Electromagnetism in a Nutshell'', p. 564 (Princeton University Press, 2012).</ref>
 
== Conservation laws ==
 
{{main|Conservation laws}}
 
The electromagnetic stress–energy tensor allows a compact way of writing the [[conservation laws]] of linear [[momentum]] and [[energy]] in electromagnetism. The divergence of the stress energy tensor is:
 
:<math>\partial_\nu T^{\mu \nu} + \eta^{\mu \rho} \, f_\rho = 0 \,</math>
 
where <math>f_\rho</math> is the (3D) [[Lorentz force]] per unit volume on [[matter]].
 
This equation is equivalent to the following 3D conservation laws
 
:<math>\frac{\partial u_\mathrm{em}}{\partial t} + \bold{\nabla} \cdot \bold{S} + \bold{J} \cdot \bold{E} = 0 \,</math>
 
:<math>\frac{\partial \bold{p}_\mathrm{em}}{\partial t} - \bold{\nabla}\cdot \sigma + \rho \bold{E} + \bold{J} \times \bold{B} = 0 \,</math>
 
respectively describing the flux of electromagnetic energy density
 
:<math>u_\mathrm{em} = \frac{\epsilon_0}{2}E^2 + \frac{1}{2\mu_0}B^2 \,</math>
 
and electromagnetic momentum density
 
:<math>\bold{p}_\mathrm{em} = {\bold{S} \over {c^2}} </math>
 
where '''J''' is the [[electric current density]] and ''ρ'' the [[electric charge density]].
 
==See also==
*[[Ricci calculus]]
*[[Covariant formulation of classical electromagnetism]]
*[[Mathematical descriptions of the electromagnetic field]]
*[[Maxwell's equations]]
*[[Maxwell's equations in curved spacetime]]
*[[General relativity]]
*[[Einstein field equations]]
*[[Magnetohydrodynamics]]
*[[vector calculus]]
 
==References==
 
{{reflist}}
 
{{DEFAULTSORT:Electromagnetic stress-energy tensor}}
[[Category:Tensors]]
[[Category:Electromagnetism]]

Latest revision as of 18:17, 29 November 2014

The author is recognized by the title of Numbers Lint. She is a librarian but she's always wanted her personal company. over the counter std home test test South Dakota is her beginning location but she needs to move simply because of her family. Playing baseball is the hobby he will std home std test kit test by over the counter std test no means quit doing.

Here is my web blog: http://www.escuelavirtual.registraduria.gov.co/user/view.php?id=140944&course=1