János Pintz: Difference between revisions
en>Michael Hardy →Mathematical results: double indentation since the paragraph is already indented |
en>Waacstats →External links: Add persondata short description using AWB |
||
Line 1: | Line 1: | ||
In [[mathematics]], the '''indefinite product''' operator is the inverse operator of <math>Q(f(x)) = \frac{f(x+1)}{f(x)}</math>. It is like a discrete version of the indefinite [[product integral]]. Some authors use term '''discrete multiplicative integration'''<ref>N. Aliev, N. Azizi and M. Jahanshahi (2007) [http://www.m-hikari.com/imf-password2007/9-12-2007/jahanshahiIMF9-12-2007-1.pdf "Invariant functions for discrete derivatives and their applications to solve non-homogenous linear and non-linear difference equations".]</ref> | |||
Thus | |||
:<math>Q( \prod_x f(x) )= f(x) \, .</math> | |||
More explicitly, if <math>\prod_x f(x) = F(x) \,</math>, then | |||
:<math>\frac{F(x+1)}{F(x)} = f(x) \, .</math> | |||
If ''F''(''x'') is a solution of this functional equation for a given ''f''(''x''), then so is ''CF''(''x'') for any constant ''C''. Therefore each indefinite product actually represents a family of functions, differing by a multiplicative constant. | |||
==Period rule== | |||
If <math>T \,</math> is a period of function <math>f(x)\,</math> then | |||
:<math>\prod _x f(Tx)=C f(Tx)^{x-1} \,</math> | |||
==Connection to indefinite sum== | |||
Indefinite product can be expressed in terms of [[indefinite sum]]: | |||
:<math>\prod _x f(x)= \exp \left(\sum _x \ln f(x)\right) \,</math> | |||
==Alternative usage== | |||
Some authors use the phrase "indefinite product" in a slightly different but related way to describe a product in which the numerical value of the upper limit is not given.<ref>[http://www.risc.uni-linz.ac.at/people/mkauers/publications/kauers05c.pdf Algorithms for Nonlinear Higher Order Difference Equations], Manuel Kauers</ref> e.g. | |||
:<math>\prod_{k=1}^n f(k)</math>. | |||
==Rules== | |||
:<math>\prod _x f(x)g(x) = \prod _x f(x)\prod _x g(x) \,</math> | |||
:<math>\prod _x f(x)^a = \left(\prod _x f(x)\right)^a \,</math> | |||
:<math>\prod _x a^{f(x)} = a^{\sum _x f(x)} \,</math> | |||
==List of indefinite products== | |||
This is a list of indefinite products <math>\prod _x f(x) \,</math>. Not all functions have an indefinite product which can be expressed in elementary functions. | |||
:<math>\prod _x a = C a^x \,</math> | |||
:<math>\prod _x x = C\, \Gamma (x) \,</math> | |||
:<math>\prod _x \frac{x+1}{x} = C x</math> | |||
:<math>\prod _x \frac{x+a}{x} = \frac{C\,\Gamma (x+a)}{\Gamma (x)}</math> | |||
:<math>\prod _x x^a = C\, \Gamma (x)^a \,</math> | |||
:<math>\prod _x ax = C a^x \Gamma (x) \,</math> | |||
:<math>\prod _x a^x = C a^{\frac{x}{2} (x-1)} \,</math> | |||
:<math>\prod _x a^{\frac{1}{x}} = C a^{\frac{\Gamma'(x)}{\Gamma(x)}} \,</math> | |||
:<math>\prod _x x^x= C\, e^{\zeta^\prime(-1,x)-\zeta^\prime(-1)}= C\,e^{\psi^{(-2)}(z)+\frac{z^2-z}{2}-\frac z2 \ln (2\pi)}= C\, \operatorname{K}(x) \,</math> | |||
:(see [[K-function]]) | |||
:<math>\prod _x \Gamma(x) = \frac{C\,\Gamma(x)^{x-1}}{\operatorname{K}(x)} = C\,\Gamma(x)^{x-1} e^{\frac z2 \ln (2\pi)-\frac{z^2-z}{2}-\psi^{(-2)}(z)}= C\, \operatorname{G}(x) \,</math> | |||
:(see [[Barnes G-function]]) | |||
:<math>\prod _x \operatorname{sexp}_a(x) = \frac{C\, (\operatorname{sexp}_a (x))'}{\operatorname{sexp}_a (x)(\ln a)^x} \,</math> | |||
:(see [[super-exponential function]]) | |||
:<math>\prod _x x+a = C\,\Gamma (x+a) \,</math> | |||
:<math>\prod _x ax+b = C\, a^x \Gamma \left(x+\frac{b}{a}\right) \,</math> | |||
:<math>\prod _x ax^2+bx = C\,a^x \Gamma (x) \Gamma \left(x+\frac{b}{a}\right) \,</math> | |||
:<math>\prod _x x^2+1 = C\, \Gamma (x-i) \Gamma (x+i) </math> | |||
:<math>\prod _x x+\frac {1}{x} = \frac{C\, \Gamma (x-i) \Gamma (x+i)}{\Gamma (x)}</math> | |||
:<math>\prod _x \csc x \sin (x+1) = C \sin x \,</math> | |||
:<math>\prod _x \sec x \cos (x+1) = C \cos x \,</math> | |||
:<math>\prod _x \cot x \tan (x+1) = C \tan x \,</math> | |||
:<math>\prod _x \tan x \cot (x+1) = C \cot x \,</math> | |||
==See also== | |||
*[[Indefinite sum]] | |||
*[[Product integral]] | |||
*[[List of derivatives and integrals in alternative calculi]] | |||
==References== | |||
{{reflist}} | |||
==Further reading== | |||
* http://reference.wolfram.com/mathematica/ref/Product.html -Indefinite products with Mathematica | |||
* http://www.math.rwth-aachen.de/MapleAnswers/660.html - bug in Maple V to Maple 8 handling of indefinite product | |||
* [http://www.math.tu-berlin.de/~mueller/HowToAdd.pdf Markus Müller. How to Add a Non-Integer Number of Terms, and How to Produce Unusual Infinite Summations] | |||
* [http://arxiv.org/abs/math/0502109 Markus Mueller, Dierk Schleicher. Fractional Sums and Euler-like Identities] | |||
{{DEFAULTSORT:Indefinite Product}} | |||
[[Category:Mathematical analysis]] | |||
[[Category:Mathematics-related lists|Indefinite sums]] | |||
[[Category:Mathematical tables|Indefinite sums]] | |||
[[Category:Non-Newtonian calculus]] |
Latest revision as of 13:53, 29 November 2013
In mathematics, the indefinite product operator is the inverse operator of . It is like a discrete version of the indefinite product integral. Some authors use term discrete multiplicative integration[1]
Thus
If F(x) is a solution of this functional equation for a given f(x), then so is CF(x) for any constant C. Therefore each indefinite product actually represents a family of functions, differing by a multiplicative constant.
Period rule
If is a period of function then
Connection to indefinite sum
Indefinite product can be expressed in terms of indefinite sum:
Alternative usage
Some authors use the phrase "indefinite product" in a slightly different but related way to describe a product in which the numerical value of the upper limit is not given.[2] e.g.
Rules
List of indefinite products
This is a list of indefinite products . Not all functions have an indefinite product which can be expressed in elementary functions.
- (see K-function)
- (see Barnes G-function)
See also
References
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.
Further reading
- http://reference.wolfram.com/mathematica/ref/Product.html -Indefinite products with Mathematica
- http://www.math.rwth-aachen.de/MapleAnswers/660.html - bug in Maple V to Maple 8 handling of indefinite product
- Markus Müller. How to Add a Non-Integer Number of Terms, and How to Produce Unusual Infinite Summations
- Markus Mueller, Dierk Schleicher. Fractional Sums and Euler-like Identities
- ↑ N. Aliev, N. Azizi and M. Jahanshahi (2007) "Invariant functions for discrete derivatives and their applications to solve non-homogenous linear and non-linear difference equations".
- ↑ Algorithms for Nonlinear Higher Order Difference Equations, Manuel Kauers