|
|
Line 1: |
Line 1: |
| In algebraic geometry, an affine '''GIT quotient''' of an affine scheme <math>\operatorname{Spec} A</math> with action by a group ''G'' is the affine scheme <math>\operatorname{Spec}(A^G)</math>, the [[prime spectrum]] of the ring of invariants of ''A'', and is denoted by <math>X /\!/ G</math>.
| | I'm Estelle and I live in a seaside city in northern Poland, Warszawa. I'm 28 and I'm will soon finish my study at Engineering.<br><br>Here is my web page; [http://support.file1.com/entries/34164120-Hostgator-Upgrade hostgator1centcoupon.info] |
| | |
| == References ==
| |
| *M. Brion, "Introduction to actions of algebraic groups" [http://www-fourier.ujf-grenoble.fr/~mbrion/notes_luminy.pdf]
| |
| *{{Citation | last1=Mumford | first1=David | author1-link=David Mumford | last2=Fogarty | first2=J. | last3=Kirwan | first3=F. | author3-link=Frances Kirwan | title=Geometric invariant theory | publisher=[[Springer-Verlag]] | location=Berlin, New York | edition=3rd | series=Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)] | isbn=978-3-540-56963-3 | id={{MathSciNet|id=0214602}}( 1st ed 1965) {{MathSciNet|id=0719371}} (2nd ed) {{MathSciNet | id = 1304906}}(3rd ed.) | year=1994 | volume=34}}
| |
| | |
| | |
| | |
| | |
| | |
| [[Category:Algebraic geometry]]
| |
| | |
| | |
| {{geometry-stub}}
| |
Latest revision as of 20:22, 2 September 2014
I'm Estelle and I live in a seaside city in northern Poland, Warszawa. I'm 28 and I'm will soon finish my study at Engineering.
Here is my web page; hostgator1centcoupon.info