|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
| The following is a list of [[integral]]s ([[antiderivative]] functions) of [[rational function]]s. | | Howdy. The author's name is Eusebio although he never really beloved that name. In his professional life he can be a people manager. He's always loved living located in Guam and he features everything that he circumstances there. To drive is one of those things he loves most. He's been working about his website for several time now. Check it out here: http://prometeu.net<br><br>My blog post; [http://prometeu.net clash of clans hack 2014] |
| For other types of functions, see [[lists of integrals]].
| |
| | |
| <!--CAUTION: before 'correcting' one of these integrals, please check that the amended integral doesn't simply differ from the existing version by a constant term. NOTE: a constant *factor* in the argument of ln() may amount to a constant term in the integral. -->
| |
| | |
| == Miscellaneous integrands ==
| |
| | |
| :<math>\int\frac{f'(x)}{f(x)} \, dx= \ln\left|f(x)\right| + C</math>
| |
| | |
| :<math>\int\frac{1}{x^2+a^2} \, dx = \frac{1}{a}\arctan\frac{x}{a}\,\! + C</math>
| |
| :<math>\int\frac{1}{x^2-a^2} \, dx = \begin{cases} \displaystyle -\frac{1}{a}\,\operatorname{arctanh}\frac{x}{a} = \frac{1}{2a}\ln\frac{a-x}{a+x} + C & \text{(for }|x| < |a|\mbox{)} \\[12pt] \displaystyle -\frac{1}{a}\,\operatorname{arccoth}\frac{x}{a} = \frac{1}{2a}\ln\frac{x-a}{x+a} + C & \text{(for }|x| > |a| \mbox{)} \end{cases}</math>
| |
| | |
| : <math>\int \frac{dx}{x^{2^n} + 1} = \sum_{k=1}^{2^{n-1}} \left \{ \frac{1}{2^{n-1}} \left [ \sin \left(\frac{(2k -1) \pi}{2^n}\right) \arctan\left[\left(x - \cos \left(\frac{(2k -1) \pi}{2^n} \right) \right ) \csc \left(\frac{(2k -1) \pi}{2^n} \right) \right] \right] - \frac{1}{2^n} \left [ \cos \left(\frac{(2k -1) \pi}{2^n} \right) \ln \left | x^2 - 2 x \cos \left(\frac{(2k -1) \pi}{2^n} \right) + 1 \right | \right ] \right \} + C </math>
| |
| <br />
| |
| Any rational function can be integrated using '''[[partial fractions in integration]]''', by decomposing the rational function into a sum of functions of the form:
| |
| : <math>\frac{a}{(x-b)^n}</math>, and <math>\frac{ax + b}{\left((x-c)^2+d^2\right)^n}.</math>
| |
| | |
| == Integrands of the form ''x''<sup>''m''</sup>(''a x'' + ''b'')<sup>''n''</sup> ==
| |
| | |
| :<math>\int\frac{1}{ax + b} \, dx= \frac{1}{a}\ln\left|ax + b\right| + C</math>
| |
| ::More generally,<ref>"[http://golem.ph.utexas.edu/category/2012/03/reader_survey_logx_c.html Reader Survey: log|''x''| + ''C'']", Tom Leinster, ''The ''n''-category Café'', March 19, 2012</ref>
| |
| ::<math>\int\frac{1}{ax + b} \, dx= \begin{cases}
| |
| \frac{1}{a}\ln\left|ax + b\right| + C^- & x < -b/a \\
| |
| \frac{1}{a}\ln\left|ax + b\right| + C^+ & x > -b/a
| |
| \end{cases}</math>
| |
| :<math>\int (ax + b)^n \, dx= \frac{(ax + b)^{n+1}}{a(n + 1)} + C \qquad\text{(for } n\neq -1\mbox{)}\,\!</math> ([[Cavalieri's quadrature formula]])
| |
| <br>
| |
| :<math>\int\frac{x}{ax + b} \, dx= \frac{x}{a} - \frac{b}{a^2}\ln\left|ax + b\right| + C</math>
| |
| :<math>\int\frac{x}{(ax + b)^2} \, dx= \frac{b}{a^2(ax + b)} + \frac{1}{a^2}\ln\left|ax + b\right| + C</math>
| |
| :<math>\int\frac{x}{(ax + b)^n} \, dx= \frac{a(1 - n)x - b}{a^2(n - 1)(n - 2)(ax + b)^{n-1}} + C \qquad\text{(for } n\not\in \{1, 2\}\mbox{)}</math>
| |
| :<math>\int x(ax + b)^n \, dx= \frac{a(n + 1)x - b}{a^2(n + 1)(n + 2)} (ax + b)^{n+1} + C \qquad\text{(for }n \not\in \{-1, -2\}\mbox{)}</math>
| |
| <br>
| |
| :<math>\int\frac{x^2}{ax + b} \, dx= \frac{b^2\ln(\left|ax + b\right|)}{a^3}+\frac{ax^2 - 2bx}{2a^2} + C</math>
| |
| :<math>\int\frac{x^2}{(ax + b)^2} \, dx= \frac{1}{a^3}\left(ax - 2b\ln\left|ax + b\right| - \frac{b^2}{ax + b}\right) + C</math>
| |
| :<math>\int\frac{x^2}{(ax + b)^3} \, dx= \frac{1}{a^3}\left(\ln\left|ax + b\right| + \frac{2b}{ax + b} - \frac{b^2}{2(ax + b)^2}\right) + C</math>
| |
| :<math>\int\frac{x^2}{(ax + b)^n} \, dx= \frac{1}{a^3}\left(-\frac{(ax + b)^{3-n}}{(n-3)} + \frac{2b (ax + b)^{2-n}}{(n-2)} - \frac{b^2 (ax + b)^{1-n}}{(n - 1)}\right) + C \qquad\text{(for } n\not\in \{1, 2, 3\}\mbox{)}</math>
| |
| <br>
| |
| :<math>\int\frac{1}{x(ax + b)} \, dx = -\frac{1}{b}\ln\left|\frac{ax+b}{x}\right| + C</math>
| |
| :<math>\int\frac{1}{x^2(ax+b)} \, dx = -\frac{1}{bx} + \frac{a}{b^2}\ln\left|\frac{ax+b}{x}\right| + C</math>
| |
| :<math>\int\frac{1}{x^2(ax+b)^2} \, dx = -a\left(\frac{1}{b^2(ax+b)} + \frac{1}{ab^2x} - \frac{2}{b^3}\ln\left|\frac{ax+b}{x}\right|\right) + C</math>
| |
| | |
| == Integrands of the form ''x''<sup>''m''</sup> / (''a x''<sup>2</sup> + ''b x'' + ''c'')<sup>''n''</sup> ==
| |
| | |
| For <math>a\neq 0:</math>
| |
| <br>
| |
| :<math>\int\frac{1}{ax^2+bx+c} dx =
| |
| \begin{cases}
| |
| \displaystyle \frac{2}{\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} + C & \text{(for }4ac-b^2>0\mbox{)} \\[12pt]
| |
| \displaystyle -\frac{2}{\sqrt{b^2-4ac}}\,\mathrm{arctanh}\frac{2ax+b}{\sqrt{b^2-4ac}} + C = \frac{1}{\sqrt{b^2-4ac}}\ln\left|\frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}}\right| + C & \text{(for }4ac-b^2<0\mbox{)} \\[12pt]
| |
| \displaystyle -\frac{2}{2ax+b} + C & \text{(for }4ac-b^2=0\mbox{)}
| |
| \end{cases}</math>
| |
| <br>
| |
| :<math>\int\frac{x}{ax^2+bx+c} \, dx = \frac{1}{2a}\ln\left|ax^2+bx+c\right|-\frac{b}{2a}\int\frac{dx}{ax^2+bx+c} + C</math>
| |
| <br>
| |
| :<math>\int\frac{mx+n}{ax^2+bx+c} \, dx = \begin{cases}
| |
| \displaystyle \frac{m}{2a}\ln\left|ax^2+bx+c\right|+\frac{2an-bm}{a\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} + C &\text{(for }4ac-b^2>0\mbox{)} \\[12pt] \displaystyle \frac{m}{2a}\ln\left|ax^2+bx+c\right|-\frac{2an-bm}{a\sqrt{b^2-4ac}}\,\mathrm{arctanh}\frac{2ax+b}{\sqrt{b^2-4ac}} + C &\text{(for }4ac-b^2<0\mbox{)} \\[12pt] \displaystyle \frac{m}{2a}\ln\left|ax^2+bx+c\right|-\frac{2an-bm}{a(2ax+b)} + C &\text{(for }4ac-b^2=0\mbox{)}\end{cases}</math>
| |
| <br>
| |
| : <math>\int\frac{1}{(ax^2+bx+c)^n} \, dx= \frac{2ax+b}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}+\frac{(2n-3)2a}{(n-1)(4ac-b^2)}\int\frac{1}{(ax^2+bx+c)^{n-1}} \, dx + C</math>
| |
| <br>
| |
| : <math>\int\frac{x}{(ax^2+bx+c)^n} \, dx= -\frac{bx+2c}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}-\frac{b(2n-3)}{(n-1)(4ac-b^2)}\int\frac{1}{(ax^2+bx+c)^{n-1}} \, dx + C</math>
| |
| <br>
| |
| : <math>\int\frac{1}{x(ax^2+bx+c)} \, dx= \frac{1}{2c}\ln\left|\frac{x^2}{ax^2+bx+c}\right|-\frac{b}{2c}\int\frac{1}{ax^2+bx+c} \, dx + C</math>
| |
| | |
| == Integrands of the form ''x''<sup>''m''</sup> (''a'' + ''b x''<sup>''n''</sup>)<sup>''p''</sup> ==
| |
| * The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0.
| |
| * These reduction formulas can be used for integrands having integer and/or fractional exponents.
| |
| | |
| :<math>
| |
| \int x^m \left(a+b\,x^n\right)^p dx =
| |
| \frac{x^{m+1} \left(a+b\,x^n\right)^p}{m+n\,p+1}\,+\,
| |
| \frac{a\,n\,p}{m+n\,p+1}\int x^m \left(a+b\,x^n\right)^{p-1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int x^m \left(a+b\,x^n\right)^p dx =
| |
| -\frac{x^{m+1} \left(a+b\,x^n\right)^{p+1}}{a\,n (p+1)}\,+\,
| |
| \frac{m+n (p+1)+1}{a\,n (p+1)}\int x^m \left(a+b\,x^n\right)^{p+1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int x^m \left(a+b\,x^n\right)^p dx =
| |
| \frac{x^{m+1} \left(a+b\,x^n\right)^p}{m+1}\,-\,
| |
| \frac{b\,n\,p}{m+1}\int x^{m+n} \left(a+b\,x^n\right)^{p-1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int x^m \left(a+b\,x^n\right)^p dx =
| |
| \frac{x^{m-n+1} \left(a+b\,x^n\right)^{p+1}}{b\,n (p+1)}\,-\,
| |
| \frac{m-n+1}{b\,n (p+1)}\int x^{m-n} \left(a+b\,x^n\right)^{p+1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int x^m \left(a+b\,x^n\right)^p dx =
| |
| \frac{x^{m-n+1} \left(a+b\,x^n\right)^{p+1}}{b (m+n\,p+1)}\,-\,
| |
| \frac{a (m-n+1)}{b (m+n\,p+1)}\int x^{m-n}\left(a+b\,x^n\right)^pdx
| |
| </math>
| |
| | |
| :<math>
| |
| \int x^m \left(a+b\,x^n\right)^p dx =
| |
| \frac{x^{m+1} \left(a+b\,x^n\right)^{p+1}}{a (m+1)}\,-\,
| |
| \frac{b (m+n (p+1)+1)}{a (m+1)}\int x^{m+n}\left(a+b\,x^n\right)^pdx
| |
| </math>
| |
| | |
| == Integrands of the form (''A'' + ''B x'') (''a'' + ''b x'')<sup>''m''</sup> (''c'' + ''d x'')<sup>''n''</sup> (''e'' + ''f x'')<sup>''p''</sup> ==
| |
| * The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'', ''n'' and ''p'' toward 0.
| |
| * These reduction formulas can be used for integrands having integer and/or fractional exponents.
| |
| * Special cases of these reductions formulas can be used for integrands of the form <math>(a+b\,x)^m (c+d\,x)^n (e+f\,x)^p</math> by setting ''B'' to 0.
| |
| | |
| :<math>
| |
| \int (A+B\,x) (a+b\,x)^m (c+d\,x)^n (e+f\,x)^p dx=
| |
| -\frac{(A\,b-a\,B)(a+b\,x)^{m+1} (c+d\,x)^n(e+f\,x)^{p+1}}{b (m+1) (a\,f-b\,e)}\,+\,
| |
| \frac{1}{b (m+1) (a\,f-b\,e)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int (b\,c(m+1) (A\,f-B\,e)+(A\,b-a\,B) (n\,d\,e+c\,f(p+1))+d(b(m+1) (A\,f-B\,e)+f(n+p+1) (A\,b-a\,B))x)(a+b\,x)^{m+1} (c+d\,x)^{n-1}(e+f\,x)^p dx
| |
| </math></blockquote>
| |
| | |
| :<math>
| |
| \int (A+B\,x) (a+b\,x)^m (c+d\,x)^n (e+f\,x)^p dx=
| |
| \frac{B(a+b\,x)^m (c+d\,x)^{n+1}(e+f\,x)^{p+1}}{d\,f(m+n+p+2)}\,+\,
| |
| \frac{1}{d\,f(m+n+p+2)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int (A\,a\,d\,f(m+n+p+2)-B (b\,c\,e\,m+a(d\,e(n+1)+c\,f(p+1)))+(A\,b\,d\,f(m+n+p+2)+B (a\,d\,f\,m-b(d\,e(m+n+1)+c\,f(m+p+1)))) x)(a+b\,x)^{m-1} (c+d\,x)^n(e+f\,x)^p dx
| |
| </math></blockquote>
| |
| | |
| :<math>
| |
| \int (A+B\,x) (a+b\,x)^m (c+d\,x)^n (e+f\,x)^p dx=
| |
| \frac{(A\,b-a\,B)(a+b\,x)^{m+1} (c+d\,x)^{n+1}(e+f\,x)^{p+1}}{(m+1)(a\,d-b\,c)(a\,f-b\,e)}\,+\,
| |
| \frac{1}{(m+1)(a\,d-b\,c)(a\,f-b\,e)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int ((m+1) (A (a\,d\,f-b(c\,f+d\,e))+B\,b\,c\,e)-(A\,b-a\,B) (d\,e(n+1)+c\,f(p+1))-d\,f(m+n+p+3) (A\,b-a\,B)x)(a+b\,x)^{m+1} (c+d\,x)^n(e+f\,x)^p dx
| |
| </math></blockquote>
| |
| | |
| == Integrands of the form ''x''<sup>''m''</sup> (''A'' + ''B x''<sup>''n''</sup>) (''a'' + ''b x''<sup>''n''</sup>)<sup>''p''</sup> (''c'' + ''d x''<sup>''n''</sup>)<sup>''q''</sup> ==
| |
| * The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'', ''p'' and ''q'' toward 0.
| |
| * These reduction formulas can be used for integrands having integer and/or fractional exponents.
| |
| * Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^q</math> and <math>x^m\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^q</math> by setting ''m'' and/or ''B'' to 0.
| |
| | |
| :<math> | |
| \int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
| |
| -\frac{(A\,b-a\,B) x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^q}{a\,b\,n (p+1)}\,+\,
| |
| \frac{1}{a\,b\,n (p+1)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int x^m\left(c (A\,b\,n (p+1)+(A\,b-a\,B) (m+1))+d (A\,b\,n (p+1)+(A\,b-a\,B) (m+n\,q+1)) x^n\right)\left(a+b\,x^n\right)^{p+1}\left(c+d\,x^n\right)^{q-1}dx
| |
| </math></blockquote>
| |
| | |
| :<math>
| |
| \int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
| |
| \frac{B\,x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^q}{b (m+n (p+q+1)+1)}\,+\,
| |
| \frac{1}{b (m+n (p+q+1)+1)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int x^m\left(c ((A\,b-a\,B) (1+m)+A\,b\,n (1+p+q))+(d(A\,b-a\,B) (1+m)+B\,n\,q(b\,c-a\,d)+A\,b\,d\,n (1+p+q))\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^{q-1}dx
| |
| </math></blockquote>
| |
| | |
| :<math>
| |
| \int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
| |
| -\frac{(A\,b-a\,B) x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{a\,n (b\,c-a\,d) (p+1)}\,+\,
| |
| \frac{1}{a\,n(b\,c-a\,d)(p+1)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int x^m\left(c(A\,b-a\,B)(m+1)+A\,n (b\,c-a\,d)(p+1)+d(A\,b-a\,B) (m+n (p+q+2)+1) x^n\right)\left(a+b\,x^n\right)^{p+1}\left(c+d\,x^n\right)^qdx
| |
| </math></blockquote>
| |
| | |
| :<math> | |
| \int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
| |
| \frac{B\,x^{m-n+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{b\,d (m+n (p+q+1)+1)}\,-\,
| |
| \frac{1}{b\,d (m+n (p+q+1)+1)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int x^{m-n}\left(a\,B\,c (m-n+1)+(a\,B\,d (m+n\,q+1)-b (-B\,c (m+n\,p+1)+A\,d (m+n (p+q+1)+1))) x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx
| |
| </math></blockquote>
| |
| | |
| :<math>
| |
| \int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
| |
| \frac{A\,x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{a\,c (m+1)}\,+\,
| |
| \frac{1}{a\,c (m+1)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int x^{m+n}\left(a\,B\,c (m+1)-A (b\,c+a\,d) (m+n+1)-A\,n (b\,c\,p+a\,d\,q)-A\,b\,d (m+n (p+q+2)+1) x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx
| |
| </math></blockquote>
| |
| | |
| :<math>
| |
| \int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
| |
| \frac{A\,x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^q}{a (m+1)}\,-\,
| |
| \frac{1}{a (m+1)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int x^{m+n}\left(c(A\,b-a\,B)(m+1)+A\,n (b\,c (p+1)+a\,d\,q)+d ((A\,b-a\,B) (m+1)+A\,b\,n (p+q+1)) x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^{q-1}dx
| |
| </math></blockquote>
| |
| | |
| :<math>
| |
| \int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
| |
| \frac{(A\,b-a\,B) x^{m-n+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{b\,n (b\,c-a\,d) (p+1)}\,-\,
| |
| \frac{1}{b\,n(b\,c-a\,d)(p+1)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int x^{m-n}\left(c(A\,b-a\,B)(m-n+1)+(d(A\,b-a\,B)(m+n\,q+1)-b\,n(B\,c-A\,d)(p+1)) x^n\right)\left(a+b\,x^n\right)^{p+1}\left(c+d\,x^n\right)^qdx
| |
| </math></blockquote>
| |
| | |
| == Integrands of the form (''d'' + ''e x'')<sup>''m''</sup> (''a'' + ''b x'' + ''c x''<sup>2</sup>)<sup>''p''</sup> when ''b''<sup>2</sup> − 4 ''a c'' = 0 ==
| |
| * The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0.
| |
| * These reduction formulas can be used for integrands having integer and/or fractional exponents.
| |
| * Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x+c\,x^2\right)^p</math> when <math>b^2-4\,a\,c=0</math> by setting ''m'' to 0.
| |
| | |
| :<math>
| |
| \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
| |
| \frac{(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^p}{e(m+1)}\,-\,
| |
| \frac{p (d+e\,x)^{m+2}(b+2 c\,x) \left(a+b\,x+c\,x^2\right)^{p-1}}{e^2(m+1)(m+2 p+1)}\,+\,
| |
| \frac{p(2 p-1)(2 c\,d-b\,e)}{e^2(m+1)(m+2 p+1)} \int (d+e\,x)^{m+1}\left(a+b\,x+c\,x^2\right)^{p-1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
| |
| \frac{(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^p}{e(m+1)}\,-\,
| |
| \frac{p (d+e\,x)^{m+2}(b+2\,c\,x)\left(a+b\,x+c\,x^2\right)^{p-1}}{e^2(m+1)(m+2)}\,+\,
| |
| \frac{2\,c\,p\,(2\,p-1)}{e^2(m+1)(m+2)} \int (d+e\,x)^{m+2} \left(a+b\,x+c\,x^2\right)^{p-1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int (d+e\,x)^m\left(a+b\,x+c\,x^2\right)^pdx=
| |
| -\frac{e(m+2 p+2)(d+e\,x)^m \left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1)(2p+1)(2 c\,d-b\,e)}\,+\,
| |
| \frac{(d+e\,x)^{m+1}(b+2 c\,x) \left(a+b\,x+c\,x^2\right)^p}{(2p+1)(2 c\,d-b\,e)}\,+\,
| |
| \frac{e^2m(m+2 p+2)}{(p+1)(2p+1)(2 c\,d-b\,e)} \int (d+e\,x)^{m-1} \left(a+b\,x+c\,x^2\right)^{p+1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
| |
| -\frac{e\,m(d+e\,x)^{m-1} \left(a+b\,x+c\,x^2\right)^{p+1}}{2c (p+1) (2p+1)}\,+\,
| |
| \frac{(d+e\,x)^m(b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{2c (2p+1)}\,+\,
| |
| \frac{e^2m(m-1)}{2c (p+1) (2p+1)} \int (d+e\,x)^{m-2} \left(a+b\,x+c\,x^2\right)^{p+1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
| |
| \frac{(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^p}{e(m+2p+1)}\,-\,
| |
| \frac{p(2 c\,d-b\,e)(d+e\,x)^{m+1}(b+2 c\,x)\left(a+b\,x+c\,x^2\right)^{p-1}}{2c\,e^2(m+2 p)(m+2p+1)}\,+\,
| |
| \frac{p (2 p-1)(2 c\,d-b\,e)^2}{2c\,e^2(m+2 p)(m+2p+1)} \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^{p-1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
| |
| -\frac{2c\,e(m+2p+2)(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1) (2 p+1)(2 c\,d-b\,e)^2}\,+\,
| |
| \frac{(d+e\,x)^{m+1}(b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{(2 p+1)(2 c\,d-b\,e)}\,+\,
| |
| \frac{2c\,e^2(m+2p+2)(m+2 p+3)}{(p+1) (2 p+1)(2 c\,d-b\,e)^2} \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^{p+1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
| |
| \frac{(d+e\,x)^m (b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{2c (m+2p+1)}\,+\,
| |
| \frac{m(2 c\,d-b\,e)}{2c (m+2p+1)} \int (d+e\,x)^{m-1}\left(a+b\,x+c\,x^2\right)^pdx
| |
| </math>
| |
| | |
| :<math>
| |
| \int (d+e\,x)^m\left(a+b\,x+c\,x^2\right)^pdx=
| |
| -\frac{(d+e\,x)^{m+1} (b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{(m+1)(2 c\,d-b\,e)}\,+\,
| |
| \frac{2c (m+2p+2)}{(m+1)(2 c\,d-b\,e)} \int (d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^pdx
| |
| </math>
| |
| | |
| == Integrands of the form (''d'' + ''e x'')<sup>''m''</sup> (''A'' + ''B x'') (''a'' + ''b x'' + ''c x''<sup>2</sup>)<sup>''p''</sup> ==
| |
| * The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0.
| |
| * These reduction formulas can be used for integrands having integer and/or fractional exponents.
| |
| * Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x+c\,x^2\right)^p</math> and <math>(d+e\,x)^m \left(a+b\,x+c\,x^2\right)^p</math> by setting ''m'' and/or ''B'' to 0.
| |
| | |
| :<math>
| |
| \int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
| |
| \frac{(d+e\,x)^{m+1} (A\,e (m+2 p+2)-B\,d (2 p+1)+e\,B (m+1) x) \left(a+b\,x+c\,x^2\right)^p}{e^2(m+1) (m+2 p+2)}\,+\,
| |
| \frac{1}{e^2(m+1) (m+2 p+2)}p\,\cdot
| |
| </math><blockquote><math>
| |
| \int (d+e\,x)^{m+1} (B (b\,d+2 a\,e+2 a\,e\,m+2 b\,d\,p)-A\,b\,e (m+2 p+2)+(B (2 c\,d+b\,e+b\,e m+4 c\,d\,p)-2 A\,c\,e (m+2 p+2))x)\left(a+b\,x+c\,x^2\right)^{p-1}dx
| |
| </math></blockquote>
| |
| | |
| :<math>
| |
| \int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
| |
| \frac{(d+e\,x)^m (A\,b-2 a\,B-(b\,B-2 A\,c) x)\left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1)\left(b^2-4 a\,c\right) }\,+\,
| |
| \frac{1}{(p+1)\left(b^2-4 a\,c\right) }\,\cdot
| |
| </math><blockquote><math>
| |
| \int (d+e\,x)^{m-1}(B (2 a\,e\,m+b\,d (2 p+3))-A (b\,e\,m+2 c\,d (2 p+3))+e(b\,B-2 A\,c) (m+2 p+3) x)\left(a+b\,x+c\,x^2\right)^{p+1}dx
| |
| </math></blockquote>
| |
| | |
| :<math>
| |
| \int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
| |
| \frac{(d+e\,x)^{m+1} (A\,c\,e (m+2 p+2)-B (c\,d+2 c\,d\,p-b\,e\,p)+B\,c\,e(m+2 p+1) x)\left(a+b\,x+c\,x^2\right)^p}{c\,e^2(m+2 p+1) (m+2 p+2)}\,-\,
| |
| \frac{p}{c\,e^2(m+2 p+1) (m+2 p+2)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int (d+e\,x)^m (A\,c\,e (b\,d-2 a\,e) (m+2 p+2)+B (a\,e (b\,e-2 c\,d\,m+b\,e\,m)+b\,d (b\,e\,p-c\,d-2 c\,d\,p))+
| |
| </math><blockquote><math>
| |
| \left(A\,c\,e (2 c\,d-b\,e) (m+2 p+2)-B \left(-b^2 e^2 (m+p+1)+2 c^2 d^2 (1+2 p)+c\,e (b\,d (m-2 p)+2 a\,e (m+2 p+1))\right)\right) x)\left(a+b\,x+c\,x^2\right)^{p-1}dx
| |
| </math></blockquote></blockquote>
| |
| | |
| :<math>
| |
| \int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
| |
| \frac{(d+e\,x)^{m+1} \left(A \left(b\,c\,d-b^2 e+2 a\,c\,e\right)-a\,B (2 c\,d-b\,e)+c (A (2 c\,d-b\,e)-B (b\,d-2 a\,e)) x\right)\left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1)\left(b^2-4 a\,c\right) \left(c\,d^2-b\,d\,e+a\,e^2\right)}\,+\,
| |
| </math><blockquote><math>
| |
| \frac{1}{(p+1)\left(b^2-4 a\,c\right) \left(c\,d^2-b\,d\,e+a\,e^2\right)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int (d+e\,x)^m (A \left(b\,c\,d\,e (2 p-m+2)+b^2 e^2 (m+p+2)-2 c^2 d^2 (3+2 p)-2 a\,c\,e^2 (m+2 p+3)\right)-
| |
| </math><blockquote><math>
| |
| B (a\,e (b\,e-2 c\,d m+b\,e\,m)+b\,d (-3 c\,d+b\,e-2 c\,d\,p+b\,e\,p))+c\,e(B (b\,d-2 a\,e)-A (2 c\,d-b\,e)) (m+2 p+4) x)\left(a+b\,x+c\,x^2\right)^{p+1}dx
| |
| </math></blockquote></blockquote></blockquote>
| |
| | |
| :<math>
| |
| \int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
| |
| \frac{B(d+e\,x)^m\left(a+b\,x+c\,x^2\right)^{p+1}}{c(m+2 p+2)}\,+\,
| |
| \frac{1}{c(m+2 p+2)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int (d+e\,x)^{m-1} (m(A\,c\,d-a\,B\,e)-d(b\,B-2 A\,c)(p+1) +((B\,c\,d-b\,B\,e+A\,c\,e) m-e(b\,B-2 A\,c)(p+1))x) \left(a+b\,x+c\,x^2\right)^pdx
| |
| </math></blockquote>
| |
| | |
| :<math> | |
| \int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
| |
| -\frac{(B\,d-A\,e) (d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^{p+1}}{(m+1)\left(c\,d^2-b\,d\,e+a\,e^2\right)}\,+\,
| |
| \frac{1}{(m+1)\left(c\,d^2-b\,d\,e+a\,e^2\right)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int (d+e\,x)^{m+1} ((A\,c\,d-A\,b\,e+a\,B\,e) (m+1)+b (B\,d-A\,e) (p+1)+c (B\,d-A\,e) (m+2 p+3) x)\left(a+b\,x+c\,x^2\right)^pdx
| |
| </math></blockquote>
| |
| | |
| == Integrands of the form ''x''<sup>''m''</sup> (''a'' + ''b x''<sup>''n''</sup> + ''c x''<sup>2''n''</sup>)<sup>''p''</sup> when ''b''<sup>2</sup> − 4 ''a c'' = 0 ==
| |
| * The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0.
| |
| * These reduction formulas can be used for integrands having integer and/or fractional exponents.
| |
| * Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x^n+c\,x^{2 n}\right)^p</math> when <math>b^2-4\,a\,c=0</math> by setting ''m'' to 0.
| |
| | |
| :<math>
| |
| \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
| |
| \frac{ x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^p}{m+2 n\,p+1}\,+\,
| |
| \frac{n\,p\,x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}}{(m+1)(m+2 n\,p+1)}\,-\,
| |
| \frac{b\,n^2 p (2 p-1)}{(m+1)(m+2 n\,p+1)} \int x^{m+n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
| |
| \frac{(m+n(2 p-1)+1) x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^p}{(m+1)(m+n+1)}\,+\,
| |
| \frac{n\,p\,x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}}{(m+1)(m+n+1)}\,+\,
| |
| \frac{2 c\,p\,n^2(2 p-1)}{(m+1)(m+n+1)} \int x^{m+2n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
| |
| \frac{(m+n(2 p+1)+1) x^{m-n+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{b\,n^2 (p+1) (2p+1)}\,-\,
| |
| \frac{x^{m+1} \left(b+2 c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{b\,n (2p+1)}\,-\,
| |
| \frac{(m-n+1)(m+n(2 p+1)+1)}{b\,n^2 (p+1) (2p+1)} \int x^{m-n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
| |
| -\frac{(m-3 n-2 n\,p+1) x^{m-2n+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{2 c\,n^2(p+1)(2p+1)}\,-\,
| |
| \frac{ x^{m-2n+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{2 c\,n(2p+1)}\,+\,
| |
| \frac{(m-n+1)(m-2n+1)}{2 c\,n^2(p+1)(2p+1)} \int x^{m-2n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
| |
| \frac{x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^p}{m+2 n\,p+1}\,+\,
| |
| \frac{n\,p\,x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}}{(m+2 n\,p+1) (m+n(2 p-1)+1)}\,+\,
| |
| \frac{2 a\,n^2 p (2 p-1)}{(m+2 n\,p+1) (m+n(2 p-1)+1)} \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
| |
| -\frac{(m+n+2 n\,p+1) x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{2 a\,n^2 (p+1) (2p+1)}\,-\,
| |
| \frac{x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{2 a\,n(2p+1)}\,+\,
| |
| \frac{(m+n(2 p+1)+1)(m+2 n (p+1)+1)}{2 a\,n^2 (p+1) (2p+1)} \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int x^m\left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
| |
| \frac{x^{m-n+1} \left(b+2c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{2c (m+2n\,p+1)}\,-\,
| |
| \frac{b (m-n+1)}{2c (m+2n\,p+1)} \int x^{m-n} \left(a+b\,x^n+c\,x^{2 n}\right)^p dx
| |
| </math>
| |
| | |
| :<math>
| |
| \int x^m\left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
| |
| \frac{x^{m+1} \left(b+2c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{b (m+1)}\,-\,
| |
| \frac{2c (m+n(2 p+1)+1)}{b (m+1)} \int x^{m+n} \left(a+b\,x^n+c\,x^{2 n}\right)^p dx
| |
| </math>
| |
| | |
| == Integrands of the form ''x''<sup>''m''</sup> (''A'' + ''B x''<sup>''n''</sup>) (''a'' + ''b x''<sup>''n''</sup> + ''c x''<sup>2''n''</sup>)<sup>''p''</sup> ==
| |
| * The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0.
| |
| * These reduction formulas can be used for integrands having integer and/or fractional exponents.
| |
| * Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x^n+c\,x^{2 n}\right)^p</math> and <math>x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p</math> by setting ''m'' and/or ''B'' to 0.
| |
| | |
| :<math>
| |
| \int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
| |
| \frac{x^{m+1} \left(A (m+n (2 p+1)+1)+B (m+1) x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^p}{(m+1) (m+n (2 p+1)+1)}\,+\,
| |
| \frac{n\,p}{(m+1) (m+n (2 p+1)+1)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int x^{m+n} \left(2 a\,B (m+1)-A\,b (m+n (2 p+1)+1)+(b\,B (m+1)-2\,A\,c (m+n (2 p+1)+1)) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx
| |
| </math></blockquote>
| |
| | |
| :<math>
| |
| \int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
| |
| \frac{x^{m-n+1} \left(A\,b-2 a\,B-(b\,B-2 A\,c) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{n(p+1) \left(b^2-4 a\,c\right)}\,+\,
| |
| \frac{1}{n(p+1) \left(b^2-4 a\,c\right)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int x^{m-n}\left((m-n+1)(2 a\,B-A\,b)+(m+2n (p+1)+1) (b\,B-2 A\,c) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx
| |
| </math></blockquote>
| |
| | |
| :<math>
| |
| \int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
| |
| \frac{x^{m+1} \left(b\,B\,n\,p+A\,c (m+n (2 p+1)+1)+B\,c (m+2 n\,p+1) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{c (m+2 n\,p+1) (m+n (2 p+1)+1)}\,+\,
| |
| \frac{n\,p}{c (m+2 n\,p+1) (m+n (2 p+1)+1)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int x^m \left(2 a\,A\,c (m+n (2 p+1)+1)-a\,b\,B (m+1)+\left(2 a\,B\,c (m+2 n\,p+1)+A\,b\,c (m+n (2 p+1)+1)-b^2 B (m+n\,p+1)\right) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx
| |
| </math></blockquote>
| |
| | |
| :<math>
| |
| \int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
| |
| -\frac{x^{m+1} \left(A\,b^2-a\,b\,B-2 a\,A\,c+(A\,b-2 a\,B) c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{a\,n(p+1) \left(b^2-4 a\,c\right)}\,+\,
| |
| \frac{1}{a\,n(p+1) \left(b^2-4 a\,c\right)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int x^m \left((m+n (p+1)+1) A\,b^2-a\,b\,B(m+1)-2(m+2n (p+1)+1)a\,A\,c+(m+n (2p+3)+1)(A\,b-2 a\,B) c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx
| |
| </math></blockquote>
| |
| | |
| :<math>
| |
| \int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
| |
| \frac{B\,x^{m-n+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{c (m+n (2 p+1)+1)}\,-\,
| |
| \frac{1}{c (m+n (2 p+1)+1)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int x^{m-n} \left(a\,B (m-n+1)+(b\,B (m+n\,p+1)-A\,c (m+n (2 p+1)+1)) x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx
| |
| </math></blockquote>
| |
| | |
| :<math>
| |
| \int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
| |
| \frac{A\,x^{m+1} \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{a(m+1)}\,+\,
| |
| \frac{1}{a(m+1)}\,\cdot
| |
| </math><blockquote><math>
| |
| \int x^{m+n} \left(a\,B (m+1)-A\,b (m+n (p+1)+1)-A\,c (m+2 n(p+1)+1) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^pdx
| |
| </math></blockquote>
| |
| | |
| == References ==
| |
| {{reflist}}
| |
| | |
| {{Lists of integrals}}
| |
| | |
| [[Category:Integrals|Rational functions]]
| |
| [[Category:Mathematics-related lists|Integrals of rational functions]]
| |