Scheme (mathematics): Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Gutworth
→‎History and motivation: link less of the text
No edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{Probability distribution
[http://Www.Dailymail.Co.uk/home/search.html?sel=site&searchPhrase=Adrianne+Swoboda Adrianne Swoboda] is what the lady's husband loves to e-mail her though she will never really like being names like that. Software happening is what she would but she's always longed her own [http://www.Wired.com/search?query=business business]. To drive is something which will she's been doing do you recall. Idaho is where her home happens to be and she will you should never move. Go to her website to seek out more: http://circuspartypanama.com<br><br>Here is my web-site :: [http://circuspartypanama.com clash of clans hack tool no survey or password]
| name      =Wishart
| type      =density
| pdf_image  =
| cdf_image  =
| notation  =<math>X \sim W_p(\mathbf{V},n)</math>
| parameters =<math> n > p-1\!</math> [[degrees of freedom (statistics)|degrees of freedom]] ([[real numbers|real]])<br /><math>\mathbf{V} > 0\,</math> [[scale matrix]] (<math>p\times p</math> [[positive definite matrix|pos. def]])
| support    =<math>\mathbf{X}\!</math> <math> (p\times p)</math>  [[positive definite matrix]]
| pdf        =<math>\frac{1}{2^\frac{np}{2}\left|{\mathbf V}\right|^\frac{n}{2}\Gamma_p(\frac{n}{2})} {\left|\mathbf{X}\right|}^{\frac{n-p-1}{2}} e^{-\frac{1}{2}{\rm tr}({\mathbf V}^{-1}\mathbf{X})}</math>
*<math>\Gamma_p</math> is the [[multivariate gamma function]]
*<math>\mathrm{tr}</math> is the [[trace (linear algebra)|trace]] function
| cdf        =
| mean      =<math>n \mathbf{V}</math>
| median    =
| mode      =<math>(n-p-1)\mathbf{V}\text{ for }n \geq p+1</math>
| variance  =<math>\operatorname{Var}(\mathbf{X}_{ij}) = n(v_{ij}^2+v_{ii}v_{jj})</math>
| skewness  =
| kurtosis  =
| entropy    =[[#Entropy|see below]]
| mgf        =
| char      =<math>\Theta \mapsto \left|{\mathbf I} - 2i\,{\mathbf\Theta}{\mathbf V}\right|^{-n/2}</math>
}}
 
In [[statistics]], the '''Wishart distribution''' is a generalization to multiple dimensions of the [[chi-squared distribution]], or, in the case of non-integer degrees of freedom, of the [[gamma distribution]]. It is named in honor of [[John Wishart (statistician)|John Wishart]], who first formulated the distribution in 1928.<ref>{{cite journal
|first=J. |last=Wishart |authorlink=John Wishart (statistician)
|title=The generalised product moment distribution in samples from a normal multivariate population
|journal=[[Biometrika]]
|volume=20A |issue=1–2 |pages=32–52 |year=1928
|doi=10.1093/biomet/20A.1-2.32 |jfm=54.0565.02 |jstor=2331939
}}</ref>
 
It is any of a family of [[probability distribution]]s defined over symmetric, [[nonnegative-definite]] [[matrix (math)|matrix]]-valued [[random variable]]s (“random matrices”).  These distributions are of great importance in the [[estimation of covariance matrices]] in [[multivariate statistics]].  In [[Bayesian inference|Bayesian statistics]], the Wishart distribution is the [[conjugate prior]] of the [[matrix inverse|inverse]] [[covariance matrix|covariance-matrix]]  of a [[multivariate normal distribution|multivariate-normal random-vector]].
 
==Definition==
Suppose ''X''  is an ''n'' &times; ''p'' matrix, each row of which is [[statistical independence|independently]] drawn from a [[multivariate normal distribution|''p''-variate normal distribution]] with zero mean:
 
:<math>X_{(i)}{=}(x_i^1,\dots,x_i^p)^T\sim N_p(0,V).</math>
 
Then the Wishart distribution is the [[probability distribution]] of the ''p''&times;''p'' random matrix
 
:<math>S=X^T X \,\!</math>
 
known as the [[scatter matrix]]. One indicates that ''S'' has that probability distribution
by writing
 
:<math>S\sim W_p(V,n).</math>
 
The positive integer ''n'' is the number of ''[[degrees of freedom (statistics)|degrees of freedom]]''.  Sometimes this is written ''W''(''V'',&nbsp;''p'',&nbsp;''n'').
For ''n''&nbsp;≥&nbsp;''p'' the matrix ''S'' is invertible with probability 1 if ''V'' is invertible.
 
If ''p'' = 1 and ''V'' = 1 then this distribution is a [[chi-squared distribution]] with ''n'' degrees of freedom.
 
==Occurrence==
 
The Wishart distribution arises as the distribution of the sample covariance matrix for a sample from a [[multivariate normal distribution]].{{Citation needed|date=October 2010}}  It occurs frequently in [[likelihood-ratio test]]s in multivariate statistical analysis.  It also arises in the spectral theory of [[Random matrix|random matrices]]{{Citation needed|date=October 2010}} and in multidimensional Bayesian analysis.{{Citation needed|date=October 2010}}
 
==Probability density function==
 
The Wishart distribution can be [[characterization (mathematics)|characterized]] by its [[probability density function]] as follows:
 
Let <math>\mathbf{X}</math> be a ''p''&nbsp;&times;&nbsp;''p'' symmetric matrix of random variables that is [[Positive-definite matrix|positive definite]].  Let <math>\mathbf{V}</math> be a (fixed) positive definite matrix of size ''p''&nbsp;&times;&nbsp;''p''.
 
Then, if ''n'' ≥ ''p'', <math>\mathbf{X}</math> has a Wishart distribution with ''n'' degrees of freedom if it has a [[probability density function]] given by
 
:<math>\frac{1}{2^\frac{np}{2}\left|{\mathbf V}\right|^\frac{n}{2}\Gamma_p(\frac{n}{2})} {\left|\mathbf{X}\right|}^{\frac{n-p-1}{2}} e^{-\frac{1}{2}{\rm tr}({\mathbf V}^{-1}\mathbf{X})}</math>
 
where Γ<sub>''p''</sub>(·) is the [[multivariate gamma function]] defined as
 
:<math>
\Gamma_p(n/2)=
\pi^{p(p-1)/4}\Pi_{j=1}^p
\Gamma\left[ n/2+(1-j)/2\right].
</math>
 
In fact the above definition can be extended to any real ''n''&nbsp;>&nbsp;''p''&nbsp;&minus;&nbsp;1.  If ''n'' ≤ ''p''&nbsp;&minus;&nbsp;2, then the Wishart no longer has a density&mdash;instead it represents a singular distribution.
<ref>“On singular Wishart and singular multivariate beta distributions” by Harald Uhlig, The Annals of Statistics, 1994, 395-405
[http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aos/1176325375 projecteuclid]</ref>
 
==Use in Bayesian statistics ==
 
In [[Bayesian statistics]], in the context of the [[multivariate normal distribution]], the Wishart distribution is the conjugate prior to the precision matrix <math>\mathbf{\Omega} = \mathbf{\Sigma}^{-1}</math>, where <math>\mathbf{\Sigma}</math> is the covariance matrix.
 
=== Choice of W ===
 
The least informative, proper Wishart prior is obtained by setting <math>n = p</math>.
 
The prior mean of <math>W_p(\mathbf{V}, n)</math> is <math>n\mathbf{V}^{-1}</math>.  This implies that a good choice for <math>\mathbf{V}</math> is <math>n\mathbf{\Sigma}_0</math>, where <math>\mathbf{\Sigma}_0</math> is some prior guess for the covariance matrix.
 
==Properties==
 
===Log-expectation===
Note the following formula:<ref name="bishop693">C.M. Bishop, ''Pattern Recognition and Machine Learning'', Springer 2006, p. 693.</ref>
 
:<math>\operatorname{E}[\ln|\mathbf{X}|] = \sum_{i=1}^p \psi\left(\tfrac{1}{2}(n+1-i)\right) + p\ln(2) + \ln|\mathbf{V}|</math>
 
where ψ is the [[digamma function]] (the derivative of the log of the [[gamma function]]).
 
This plays a role in [[variational Bayes]] derivations for [[Bayes network]]s involving the Wishart distribution.
 
===Entropy===
The [[information entropy]] of the distribution has the following formula:<ref name="bishop693"/>
 
:<math>\operatorname{H}[\mathbf{X}] = -\ln \left (B(\mathbf{V},n) \right ) -\tfrac{1}{2}(n-p-1) \operatorname{E}[\ln|\mathbf{X}|] + \frac{np}{2}</math>
 
where <math>B(\mathbf{V},n)</math> is the [[normalizing constant]] of the distribution:
 
:<math>B(\mathbf{V},n) = \frac{1}{\left|\mathbf{V}\right|^\frac{n}{2} 2^\frac{np}{2}\Gamma_p(\frac{n}{2})}</math>
 
This can be expanded as follows:
 
:<math>\begin{align}
\operatorname{H}[\mathbf{X}] &= \tfrac{n}{2}\ln|\mathbf{V}| +\tfrac{np}{2}\ln(2) + \ln\left (\Gamma_p(\tfrac{n}{2}) \right ) -\tfrac{1}{2}(n-p-1) \operatorname{E}[\ln|\mathbf{X}|] + \tfrac{np}{2} \\
&= \tfrac{n}{2}\ln|\mathbf{V}| +\tfrac{np}{2}\ln(2) + \tfrac{1}{4} p(p-1) \ln(\pi) + \sum_{i=1}^p \ln \left (\Gamma\left ( \tfrac{n}{2}+\tfrac{1-i}{2}\right ) \right ) \\
&\qquad \qquad -\tfrac{1}{2}(n-p-1)\left(\sum_{i=1}^p \psi\left(\tfrac{1}{2}(n+1-i)\right) + p\ln(2) + \ln|\mathbf{V}|\right) + \tfrac{np}{2} \\
&= \tfrac{n}{2}\ln|\mathbf{V}| +\tfrac{np}{2}\ln(2) + \tfrac{1}{4} p(p-1) \ln(\pi) + \sum_{i=1}^p \ln \left (\Gamma\left ( \tfrac{n}{2}+\tfrac{1-i}{2}\right ) \right ) \\
&\qquad \qquad - \left ( \tfrac{1}{2}(n-p-1)\sum_{i=1}^p \psi\left(\tfrac{1}{2}(n+1-i)\right) + \tfrac{1}{2}(n-p-1)p\ln(2) + \tfrac{1}{2}(n-p-1)\ln|\mathbf{V}|\right) + \tfrac{np}{2} \\
&= \tfrac{p+1}{2}\ln|\mathbf{V}| +\tfrac{1}{2}p(p+1)\ln(2) + \tfrac{1}{4}p(p-1) \ln(\pi) + \sum_{i=1}^p \ln \left (\Gamma\left ( \tfrac{n}{2}+\tfrac{1-i}{2}\right ) \right ) -\tfrac{1}{2}(n-p-1)\sum_{i=1}^p \psi\left(\tfrac{1}{2}(n+1-i)\right) + \tfrac{np}{2}
\end{align}</math>
 
===Characteristic function===
The [[characteristic function (probability theory)|characteristic function]] of the Wishart distribution is
 
:<math>\Theta \mapsto \left|{\mathbf I} - 2i\,{\mathbf\Theta}{\mathbf V}\right|^{-\frac{n}{2}}.</math>
 
In other words,
 
:<math>\Theta \mapsto \operatorname{E}\left [ \mathrm{exp}\left (i \mathrm{tr}(\mathbf{X}{\mathbf\Theta})\right )\right ] = \left|{\mathbf I} - 2i{\mathbf\Theta}{\mathbf V}\right|^{-\frac{n}{2}} </math>
 
where E[⋅] denotes expectation. (Here Θ and '''I''' are matrices the same size as '''V''' ('''I''' is the [[identity matrix]]); and ''i'' is the square root of&nbsp;−1).<ref>{{cite book
| last = Anderson
| first = T. W.
| authorlink = T. W. Anderson
| title = An Introduction to Multivariate Statistical Analysis
| publisher = [[Wiley Interscience]]
| edition = 3rd
| location = Hoboken, N. J.
| year = 2003
| page = 259
| isbn = 0-471-36091-0 }}</ref>
 
==Theorem==
 
If <math>\scriptstyle \mathbf{X}</math> has a Wishart distribution with ''m'' degrees of freedom and variance matrix <math>\scriptstyle {\mathbf V}</math>&mdash;write <math>\scriptstyle \mathbf{X}\sim\mathcal{W}_p({\mathbf V},m)</math>&mdash;and <math>\scriptstyle{\mathbf C}</math> is a ''q''&nbsp;&times;&nbsp;''p'' matrix of [[rank (matrix theory)|rank]] ''q'', then <ref name="rao">Rao, C. R., ''Linear statistical inference and its applications'', Wiley 1965, p. 535.</ref>
 
:<math>
{\mathbf C}\mathbf{X}{\mathbf C}^T
\sim
\mathcal{W}_q\left({\mathbf C}{\mathbf V}{\mathbf C}^T,m\right).
</math>
 
===Corollary 1===
 
If <math>{\mathbf z}</math> is a nonzero <math>p\times 1</math> constant vector, then<ref name="rao"/>
<math>{\mathbf z}^T\mathbf{X}{\mathbf z}\sim\sigma_z^2\chi_m^2</math>.
 
In this case, <math>\chi_m^2</math> is
the [[chi-squared distribution]] and <math>\sigma_z^2={\mathbf z}^T{\mathbf V}{\mathbf z}</math> (note that <math>\sigma_z^2</math> is a constant; it is positive because <math>{\mathbf V}</math> is positive definite).
 
===Corollary 2===
 
Consider the case where <math>{\mathbf z}^T=(0,\ldots,0,1,0,\ldots,0)</math> (that is, the ''j''th element is one and all others zero).  Then corollary 1 above shows that
 
:<math>
w_{jj}\sim\sigma_{jj}\chi^2_m</math>
 
gives the marginal distribution of each of the elements on the matrix's diagonal.
 
Noted statistician [[George Seber]] points out{{Citation needed|date=October 2010}} that the Wishart distribution is not called the “multivariate chi-squared distribution” because the marginal distribution of the off-diagonal elements is not chi-squared.  Seber prefers{{Citation needed|date=October 2010}} to reserve the term [[multivariate statistics|multivariate]] for the case when all univariate marginals belong to the same family.
 
==Estimator of the multivariate normal distribution==
 
The Wishart distribution is the [[sampling distribution]] of the [[maximum likelihood|maximum-likelihood estimator]] (MLE) of the [[covariance matrix]] of a [[multivariate normal distribution]].<ref>C. Chatfield and A. J. Collins, 1980,"Introduction to Multivariate Analysis" p.103-108</ref>  A [[estimation of covariance matrices|derivation of the MLE]] uses the [[spectral theorem]].
 
==Bartlett decomposition==
The '''Bartlett decomposition''' of a matrix <math>\mathbf{X}</math> from a ''p''-variate Wishart distribution with scale matrix '''V''' and ''n'' degrees of freedom is the factorization:
:<math>\mathbf{X} = {\textbf L}{\textbf A}{\textbf A}^T{\textbf L}^T</math>
where '''L''' is the [[Cholesky decomposition]] of '''V''', and:
:<math>\mathbf A = \begin{pmatrix}
\sqrt{c_1} & 0 & 0 & \cdots & 0\\
n_{21} & \sqrt{c_2} &0 & \cdots& 0 \\
n_{31} & n_{32} & \sqrt{c_3} & \cdots & 0\\
\vdots & \vdots & \vdots &\ddots & \vdots \\
n_{p1} & n_{p2} & n_{p3} &\cdots & \sqrt{c_p}
\end{pmatrix}</math>
where <math>c_i \sim \chi^2_{n-i+1}</math> and <math>n_{ij} \sim N(0,1) \,</math> independently.<ref>{{cite book
| last = Anderson
| first = T. W.
| authorlink = T. W. Anderson
| title = An Introduction to Multivariate Statistical Analysis
| publisher = [[Wiley Interscience]]
| edition = 3rd
| location = Hoboken, N. J.
| year = 2003
| page = 257
| isbn = 0-471-36091-0 }}</ref>
This provides a useful method for obtaining random samples from a Wishart distribution.<ref>{{cite journal
|title=Algorithm AS 53: Wishart Variate Generator
|first1= W. B. |last1=Smith
|first2= R. R. |last2=Hocking
|journal=[[Journal of the Royal Statistical Society, Series C]]
|volume=21 |issue=3 |year=1972 |pages=341&ndash;345
|jstor=2346290
}}</ref>
 
==The possible range of the shape parameter==
It can be shown <ref>{{cite journal
|doi=10.1214/aop/1176990455
|last=Peddada and Richards
|first1=Shyamal Das
|last2=Richards
|first2=Donald St. P. |title=Proof of a Conjecture of M. L. Eaton on the Characteristic Function of the Wishart Distribution,
|journal=[[Annals of Probability]]
|volume=19 |issue=2 |pages=868&ndash;874 |year=1991 }}</ref> that the Wishart distribution can be defined if and only if the shape parameter '''n''' belongs to the set
:<math>
\Lambda_p:=\{0,\dots,p-1\}\cup \left(p-1,\infty\right).
</math>
This set is named after Gindikin, who introduced it<ref>{{cite journal
|doi=10.1007/BF01078179
|first=S.G. |last=Gindikin
|title=Invariant generalized functions in homogeneous domains,
|journal=[[Funct. Anal. Appl.]],
|volume=9
|issue=1 |pages=50&ndash;52 |year=1975
}}</ref> in the seventies
in the context of gamma distributions on homogeneous cones. However, for the new parameters in the discrete spectrum of the Gindikin ensemble, namely,
:<math>
\Lambda_p^*:=\{0,\dots,p-1\},
</math>
the corresponding Wishart distribution has no Lebesgue density.
 
== Relationships to other distributions ==
*The Wishart distribution is related to the [[Inverse-Wishart distribution]], denoted by <math>W_p^{-1}</math>, as follows: If <math>\mathbf{X}\sim W_p(\mathbf{V},n)</math> and if we do the change of variables <math>\mathbf{C}=\mathbf{X}^{-1}</math>, then <math>\mathbf{C}\sim W_p^{-1}(\mathbf{V}^{-1},n)</math>. This relationship may be derived by noting that the absolute value of the [[Jacobian determinant]] of this change of variables is <math>|\mathbf{C}|^{p+1}</math>, see for example equation (15.15) in.<ref>Paul S. Dwyer, “SOME APPLICATIONS OF MATRIX DERIVATIVES IN MULTIVARIATE ANALYSIS”, JASA 1967; 62:607-625, available [http://www.jstor.org/pss/2283988 JSTOR].</ref>
* In [[Bayesian statistics]], the Wishart distribution is a [[conjugate prior]] for the [[Precision (statistics)|precision parameter]] of the [[multivariate normal distribution]], when the mean parameter is known.<ref>C.M. Bishop, ''Pattern Recognition and Machine Learning'', Springer 2006.</ref>
* A generalization is the [[multivariate gamma distribution]].
* A different type of generalization is the [[normal-Wishart distribution]], essentially the product of a [[multivariate normal distribution]] with a Wishart distribution.
 
==See also==
 
{{Colbegin}}
* [[Chi-squared distribution]]
* [[F-distribution]]
* [[Gamma distribution]]
* [[Hotelling's T-squared distribution]]
* [[Inverse-Wishart distribution]]
* [[Multivariate gamma distribution]]
* [[Student's t-distribution]]
* [[Wilks' lambda distribution]]
{{Colend}}
 
==References==
{{reflist}}
 
==External links==
* [https://github.com/zweng/rmg A C++ library for random matrix generator]
 
 
 
{{ProbDistributions|multivariate}}
 
{{DEFAULTSORT:Wishart Distribution}}
[[Category:Continuous distributions]]
[[Category:Multivariate continuous distributions]]
[[Category:Multivariate statistics]]
[[Category:Random matrices]]
[[Category:Conjugate prior distributions]]
[[Category:Exponential family distributions]]
[[Category:Probability distributions]]

Latest revision as of 03:42, 5 January 2015

Adrianne Swoboda is what the lady's husband loves to e-mail her though she will never really like being names like that. Software happening is what she would but she's always longed her own business. To drive is something which will she's been doing do you recall. Idaho is where her home happens to be and she will you should never move. Go to her website to seek out more: http://circuspartypanama.com

Here is my web-site :: clash of clans hack tool no survey or password