Ackermann function: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>CBM
Apparently the bots template was not broad enough; no reason I can see to change existing style, which may not even *be* CS1.
en>Stamptrader
m corrected CS1 error
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{bots|deny=AWB}}
My name: Debora Leavitt<br>My age: 40<br>Country: Italy<br>Town: Campremoldo Sopra E Sotto <br>Post code: 29010<br>Street: Via Torino 46<br><br>Here is my website: [http://hemorrhoidtreatmentfix.com/thrombosed-hemorrhoid thrombosed external hemorrhoid]
In [[computability theory]], the '''Ackermann function''', named after [[Wilhelm Ackermann]], is one of the simplest and earliest-discovered examples of a [[total function|total]] [[computable function]] that is not [[Primitive recursive function|primitive recursive]]. All primitive recursive functions are total and computable, but the Ackermann function illustrates that not all total computable functions are primitive recursive.
 
After Ackermann's publication<ref name="Ack">{{cite journal | author=Wilhelm Ackermann | journal=[[Mathematische Annalen]] | title=Zum Hilbertschen Aufbau der reellen Zahlen | year=1928 | volume=99 | pages=118–133 | url=http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PPN=PPN235181684_0099&DMDID=DMDLOG_0009 | doi=10.1007/BF01459088}}</ref> of his function (which had three nonnegative integer arguments), many authors modified it to suit various purposes, so that today "the Ackermann function" may refer to any of numerous variants of the original function. One common version, the two-argument '''Ackermann–Péter function''', is defined as follows for nonnegative integers ''m'' and ''n'':
 
:<math> A(m, n) =
\begin{cases}
n+1 & \mbox{if } m = 0 \\
A(m-1, 1) & \mbox{if } m > 0 \mbox{ and } n = 0 \\
A(m-1, A(m, n-1)) & \mbox{if } m > 0 \mbox{ and } n > 0.
\end{cases}
</math>
 
Its value grows rapidly, even for small inputs. For example ''A''(4,2) is an integer of 19,729 decimal digits.<ref>[http://www.kosara.net/thoughts/ackermann42.html Decimal expansion of A(4,2)] {{Wayback|url=http://www.kosara.net/thoughts/ackermann42.html|date =20080317104411}}</ref>
 
==History==
In the late 1920s, the mathematicians [[Gabriel Sudan]] and [[Wilhelm Ackermann]], students of [[David Hilbert]], were studying the foundations of computation. Both Sudan and Ackermann are credited<ref>{{cite journal | author=Cristian Calude, [[Solomon Marcus]] and Ionel Tevy | journal = Historia Math. | title=The first example of a recursive function which is not primitive recursive | month=November | year=1979 | pages=380–84 | volume=6 | issue=4 | doi=10.1016/0315-0860(79)90024-7}}</ref> with discovering [[total function|total]] [[computable function]]s (termed simply "recursive" in some references) that are not [[primitive recursive function|primitive recursive]]. Sudan published the lesser-known [[Sudan function]], then shortly afterwards and independently, in 1928, Ackermann published his function <math>\varphi\,\!</math>. Ackermann's three-argument function, <math>\varphi(m, n, p)\,\!</math>, is defined such that for ''p'' = 0, 1, 2, it reproduces the basic operations of addition, multiplication, and exponentiation as
:<math>\varphi(m, n, 0) = m+n,\,\!</math>
:<math>\varphi(m, n, 1) = m\cdot n,\,\!</math>
:<math>\varphi(m, n, 2) = m^n,\,\!</math>
and for ''p'' > 2 it extends these basic operations in a way that happens to be expressible in [[Knuth's up-arrow notation]] as
:<math>\varphi(m, n, p) = m\uparrow^{p - 1}n.\,\!</math>
(Aside from its historic role as a total-computable-but-not-primitive-recursive function, Ackermann's original function is seen to extend the basic arithmetic operations beyond exponentiation, although not as seamlessly as do variants of Ackermann's function that are specifically designed for that purpose — such as [[Reuben Goodstein|Goodstein's]] [[hyperoperation]] sequence.)
 
In ''On the Infinite'', David Hilbert hypothesized that the Ackermann function was not primitive recursive, but it was Ackermann, Hilbert’s personal secretary and former student, who actually proved the hypothesis in his paper ''On Hilbert’s Construction of the Real Numbers''. ''On the Infinite'' was Hilbert’s most important paper on the foundations of mathematics, serving as the heart of [[Hilbert's program]] to secure the foundation of [[transfinite number]]s by basing them on finite methods.<ref name="Ack"/><ref>von Heijenoort. [http://mathgate.info/cebrown/notes/vonHeijenoort.php From Frege To Gödel], 1967.</ref>
 
[[Rózsa Péter]] and [[Raphael Robinson]] later developed a two-variable version of the Ackermann function that became preferred by many authors.<ref>{{cite journal | author=Raphael M. Robinson | title=Recursion and Double Recursion | journal=[[Bulletin of the American Mathematical Society]] | year=1948 | volume=54 | pages=987–93 | url=http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.bams/1183512393&page=record | doi=10.1090/S0002-9904-1948-09121-2 | issue=10}}</ref>
 
==Definition and properties==
Ackermann's original three-argument function <math>\varphi(m, n, p)\,\!</math> is defined [[recursion|recursively]] as follows for nonnegative integers ''m'', ''n'', and ''p'':
 
:<math> \varphi(m,n,p) = \begin{cases}
\varphi(m, n, 0) = m + n \\
\varphi(m, 0, 1) = 0 \\
\varphi(m, 0, 2) = 1 \\
\varphi(m, 0, p) = m &\text{ for } p > 2 \\
\varphi(m, n, p) = \varphi(m, \varphi(m, n-1, p), p - 1) &\text{ for } n > 0 \text{ and } p > 0.
\end{cases}\,\!</math>
 
Of the various two-argument versions, the one developed by Péter and Robinson (called "the" Ackermann function by some authors) is defined for nonnegative integers ''m'' and ''n'' as follows:
 
:<math> A(m, n) =
\begin{cases}
n+1 & \mbox{if } m = 0 \\
A(m-1, 1) & \mbox{if } m > 0 \mbox{ and } n = 0 \\
A(m-1, A(m, n-1)) & \mbox{if } m > 0 \mbox{ and } n > 0.
\end{cases}
</math>
 
It may not be immediately obvious that the evaluation of <math> A(m, n)</math> always terminates. However, the recursion is bounded because in each recursive application either ''m'' decreases, or ''m'' remains the same and ''n'' decreases. Each time that ''n'' reaches zero, ''m'' decreases, so ''m'' eventually reaches zero as well. (Expressed more technically, in each case the pair (''m'', ''n'') decreases in the [[lexicographic order]] on pairs, which is a [[well-order]]ing, just like the ordering of single non-negative integers; this means one cannot go down in the ordering infinitely many times in succession.) However, when ''m'' decreases there is no upper bound on how much ''n'' can increase — and it will often increase greatly.
 
The Péter-Ackermann function can also be expressed in terms of various other versions of the Ackermann function:
* the indexed version of [[Knuth's up-arrow notation]] (extended to integer indices ≥ -2):
::''A''(''m'', ''n'') = <math>2\uparrow^{m-2} (n+3) - 3.</math>
:The part of the definition ''A''(''m'', 0) = A(''m''-1, 1) corresponds to <math>2\uparrow^{m+1} 3=2\uparrow^m 4.</math>
 
* [[hyper operator]]s:
::''A''(''m'', ''n'') = hyper(2, m, n + 3) − 3.
 
* [[Conway chained arrow]] notation:
::''A''(''m'', ''n'') = (2 → (''n''+3) → ''(m'' − 2)) − 3 for ''m''&nbsp;>&nbsp;2
:hence
::2 → ''n'' → ''m'' = ''A''(''m''+2,''n''-3) + 3 for ''n''>2.
:(''n''=1 and ''n''=2 would correspond with ''A''(''m'',−2)&nbsp;=&nbsp;−1 and ''A''(''m'',−1)&nbsp;=&nbsp;1, which could logically be added.)
 
For small values of ''m'' like 1, 2, or 3, the Ackermann function grows relatively slowly with respect to ''n'' (at most [[exponential growth|exponentially]]). For ''m'' ≥ 4, however, it grows much more quickly; even ''A''(4,&nbsp;2) is about 2{{e|19728}}, and the decimal expansion of ''A''(4,&nbsp;3) is very large by any typical measure.
 
Logician [[Harvey Friedman]] defines a version of the Ackermann function as follows:
 
* For n = 0: A(m, n) = 1
 
*For m = 1: A(m, n) = 2n
*Else: A(m, n) = A(m - 1, A(m, n - 1))
 
He also defines a single-argument version A(n) = A(n, n).<ref>http://www.math.osu.edu/~friedman.8/pdf/AckAlgGeom102100.pdf</ref>
 
A single-argument version A(k) = A(k, k) that increases both ''m'' and ''n'' at the same time dwarfs every primitive recursive function, including very fast-growing functions such as the [[exponential function]], the factorial function, multi- and [[superfactorial]] functions, and even functions defined using Knuth's up-arrow notation (except when the indexed up-arrow is used). It can be seen that A(n) is roughly comparable to f<sub>ω</sub>(n) in the fast-growing hierarchy.
 
This extreme growth can be exploited to show that ''f'', which is obviously computable on a machine with infinite memory such as a [[Turing machine]] and so is a [[computable function]], grows faster than any primitive recursive function and is therefore not primitive recursive. In a category with exponentials, using the isomorphism <math>A \times B \rightarrow C \cong A \rightarrow (B \rightarrow C)</math> (in computer science, this is called [[currying]]), the Ackermann function may be defined via primitive recursion over higher-order functionals as follows:
 
:<math>
\begin{array}{lcl}
\operatorname{Ack}(0) & = & \operatorname{Succ} \\
\operatorname{Ack}(m+1) & = & \operatorname{Iter}(\operatorname{Ack}(m))
\end{array}
</math>
 
where ''Succ'' is the usual [[successor function]] and ''Iter'' is defined by primitive recursion as well:
 
:<math>
\begin{array}{lcl}
\operatorname{Iter}(f)(0) & = & f(1) \\
\operatorname{Iter}(f)(n+1) & = & f(\operatorname{Iter}(f)(n)).
\end{array}
</math>
 
One interesting aspect of the Ackermann function is that the only arithmetic operations it ever uses are addition and subtraction of 1. Its properties come solely from the power of unlimited recursion. This also implies that its running time is at least proportional to its output, and so is also extremely huge. In actuality, for most cases the running time is far larger than the output; see below.
 
==Table of values==
Computing the Ackermann function can be restated in terms of an infinite table. We place the natural numbers along the top row. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken. If there is no number to its left, simply look at the column headed "1" in the previous row. Here is a small upper-left portion of the table:
 
{| class="wikitable"
|+ Values of ''A''(''m'',&nbsp;''n'')
|-
! ''m''\''n''
! 0
! 1
! 2
! 3
! 4
! n
|-
! 0
| 1 || 2 || 3 || 4 || 5 || <math>n + 1</math>
|-
! 1
| 2 || 3 || 4 || 5 || 6 || <math>n + 2 = 2 + (n + 3) - 3</math>
|-
! 2
| 3 || 5 || 7 || 9 || 11 || <math>2n + 3 = 2\cdot(n + 3) - 3</math>
|-
! 3
| 5 || 13 || 29 || 61 || 125 || <math>2^{(n+3)} - 3</math>
|-
! 4
| 13 <BR><BR>=<math>{2^{2^{2}}}-3</math>|| 65533 <BR><BR>=<math>{2^{2^{2^{2}}}}-3</math>
| 2<sup>65536</sup>&nbsp;−&nbsp;3 <BR><BR>=<math>{2^{2^{2^{2^{2}}}}}-3</math>
| <math>{2^{2^{65536}}} - 3</math> <BR><BR>=<math>{2^{2^{2^{2^{2^{2}}}}}}-3</math>
| <math>{2^{2^{2^{65536}}}} - 3</math> <BR><BR>=<math>{2^{2^{2^{2^{2^{2^{2}}}}}}}-3</math>
| <math>\begin{matrix}\underbrace{{2^2}^{{\cdot}^{{\cdot}^{{\cdot}^2}}}} - 3 \\n\mbox{ + 3}\end{matrix}</math>
|}
 
The numbers listed here in a recursive reference are very large and cannot be easily notated in some other form.
 
Despite the large values occurring in this early section of the table, some even larger numbers have been defined, such as [[Graham's number]], which cannot be written with any small number of [[Knuth's up-arrow notation|Knuth arrows]]. This number is constructed with a technique similar to applying the Ackermann function to itself recursively.
 
This is a repeat of the above table, but with the values replaced by the relevant expression from the function definition to show the pattern clearly:
 
{| class="wikitable"
|+ Values of ''A''(''m'',&nbsp;''n'')
|-
! ''m''\''n''
! 0
! 1
! 2
! 3
! 4
! n
|-
! 0
| 0+1 || 1+1 || 2+1 || 3+1 || 4+1 || <math>n + 1</math>
|-
! 1
| A(0,1) || A(0,A(1,0)) || A(0,A(1,1)) || A(0,A(1,2)) || A(0,A(1,3)) || <math>n + 2 = 2 + (n + 3) - 3</math>
|-
! 2
| A(1,1) || A(1,A(2,0)) || A(1,A(2,1)) || A(1,A(2,2)) || A(1,A(2,3)) || <math>2n + 3 = 2\cdot(n + 3) - 3</math>
|-
! 3
| A(2,1) || A(2,A(3,0)) || A(2,A(3,1)) || A(2,A(3,2)) || A(2,A(3,3)) || <math>2^{(n+3)} - 3</math>
|-
! 4
| A(3,1) || A(3,A(4,0)) || A(3,A(4,1)) || A(3,A(4,2)) || A(3,A(4,3)) ||
<math>\begin{matrix}\underbrace{{2^2}^{{\cdot}^{{\cdot}^{{\cdot}^2}}}} - 3 \\n\mbox{ + 3}\end{matrix}</math>
|-
! 5
| A(4,1) || A(4,A(5,0)) || A(4,A(5,1)) || A(4,A(5,2)) || A(4,A(5,3)) ||
''A''(4,&nbsp;''A''(5,&nbsp;n-1))
|-
! 6
| A(5,1) || A(5,A(6,0)) || A(5,A(6,1)) || A(5,A(6,2)) || A(5,A(6,3)) ||
''A''(5,&nbsp;''A''(6,&nbsp;n-1))
|}
 
==Expansion==
To see how the Ackermann function grows so quickly, it helps to expand out some simple expressions using the rules in the original definition. For example, we can fully evaluate <math>A(1, 2)</math> in the following way:
 
:<math>\begin{align}
A(1,2) & = A(0, A(1, 1)) \\
& = A(0, A(0, A(1, 0))) \\
& = A(0, A(0, A(0, 1))) \\
& = A(0, A(0, 2)) \\
& = A(0, 3) \\
& = 4.
\end{align}</math>
 
To demonstrate how <math>A(4, 3)</math>'s computation results in many steps and in a large number:
:<math>\begin{align}
A(4, 3) & = A(3, A(4, 2)) \\
& = A(3, A(3, A(4, 1))) \\
& = A(3, A(3, A(3, A(4, 0)))) \\
& = A(3, A(3, A(3, A(3, 1)))) \\
& = A(3, A(3, A(3, A(2, A(3, 0))))) \\
& = A(3, A(3, A(3, A(2, A(2, 1))))) \\
& = A(3, A(3, A(3, A(2, A(1, A(2, 0)))))) \\
& = A(3, A(3, A(3, A(2, A(1, A(1, 1)))))) \\
& = A(3, A(3, A(3, A(2, A(1, A(0, A(1, 0))))))) \\
& = A(3, A(3, A(3, A(2, A(1, A(0, A(0, 1))))))) \\
& = A(3, A(3, A(3, A(2, A(1, A(0, 2)))))) \\
& = A(3, A(3, A(3, A(2, A(1, 3))))) \\
& = A(3, A(3, A(3, A(2, A(0, A(1, 2)))))) \\
& = A(3, A(3, A(3, A(2, A(0, A(0, A(1, 1))))))) \\
& = A(3, A(3, A(3, A(2, A(0, A(0, A(0, A(1, 0)))))))) \\
& = A(3, A(3, A(3, A(2, A(0, A(0, A(0, A(0, 1)))))))) \\
& = A(3, A(3, A(3, A(2, A(0, A(0, A(0, 2)) )) )) ) \\
& = A(3, A(3, A(3, A(2, A(0, A(0, 3)))))) \\
& = A(3, A(3, A(3, A(2, A(0, 4)))))  \\
& = A(3, A(3, A(3, A(2, 5)))) \\
& = \ldots \\
& = A(3, A(3, A(3, 13))) \\
& = \ldots \\
& = A(3, A(3, 65533)) \\
& = \ldots \\
& = A(3, 2^{65536} - 3) \\
& = \ldots \\
& = 2^{2^{ \overset{65536}{} }} - 3. \\
\end{align}</math>
 
Written as a power of 10, this is roughly equivalent to 10<sup>6.031{{e|19727}}</sup>.
 
==Inverse==
Since the function &nbsp;''f''&nbsp;(''n'')&nbsp;=&nbsp;''A''(''n'',&nbsp;''n'') considered above grows very rapidly, its [[inverse function]], ''f''<sup>−1</sup>, grows very slowly. This '''inverse Ackermann function''' ''f''<sup>−1</sup> is usually denoted by '''α'''. In fact, α(n) is less than 5 for any practical input size ''n'', since A(4,&nbsp;4) is on the order of <math>2^{2^{10^{19729}}}</math>.
 
This inverse appears in the time [[computational complexity theory|complexity]] of some [[algorithm]]s, such as the [[disjoint-set data structure]] and [[Bernard Chazelle|Chazelle]]'s algorithm for [[minimum spanning tree]]s. Sometimes Ackermann's original function or other variations are used in these settings, but they all grow at similarly high rates. In particular, some modified functions simplify the expression by eliminating the ''−3'' and similar terms.
 
A two-parameter variation of the inverse Ackermann function can be defined as follows, where <math>\lfloor x \rfloor</math> is the [[floor function]]:
:<math>\alpha(m,n) = \min\{i \geq 1 : A(i,\lfloor m/n \rfloor) \geq \log_2 n\}.</math>
This function arises in more precise analyses of the algorithms mentioned above, and gives a more refined time bound. In the disjoint-set data structure, ''m'' represents the number of operations while ''n'' represents the number of elements; in the minimum spanning tree algorithm, ''m'' represents the number of edges while ''n'' represents the number of vertices.
Several slightly different definitions of α(''m'',&nbsp;''n'') exist; for example, log<sub>2</sub>&nbsp;''n'' is sometimes replaced by ''n'', and the floor function is sometimes replaced by a [[ceiling function|ceiling]].
 
Other studies might define an inverse function of one where m is set to a constant, such that the inverse applies to a particular row.<ref>[http://cat.inist.fr/?aModele=afficheN&cpsidt=15618233 An inverse-Ackermann style lower bound for the online minimum spanning tree verification problem] November 2002</ref>
 
==Use as benchmark==
The Ackermann function, due to its definition in terms of extremely deep recursion, can be used as a benchmark of a [[compiler]]'s ability to optimize recursion. The first use of Ackermann's function in this way was by Yngve Sundblad, ''The Ackermann function. A Theoretical, computational and formula manipulative study.'' (BIT 11 (1971), 107119).
 
This seminal paper was taken up by Brian Wichmann (co-author of the [[Whetstone (benchmark)|Whetstone benchmark]]) in a trilogy of papers written between 1975 and 1982.<ref>{{cite web | title=Ackermann's Function: A Study In The Efficiency Of Calling Procedures | year = 1975 | url=http://history.dcs.ed.ac.uk/archive/docs/Imp_Benchmarks/ack.pdf}}</ref><ref>{{cite web | title=How to Call Procedures, or Second Thoughts on Ackermann's Function | year = 1977 | url=http://history.dcs.ed.ac.uk/archive/docs/Imp_Benchmarks/ackpe.pdf}}</ref><ref>{{cite web | title=Latest results from the procedure calling test, Ackermann's function | year = 1982 | url=http://history.dcs.ed.ac.uk/archive/docs/Imp_Benchmarks/acklt.pdf}}</ref>
 
==Ackermann numbers==<!-- This section is linked from [[Googolplex]] -->
In ''The Book of Numbers'', [[John Horton Conway]] and [[Richard K. Guy]] define the sequence of '''Ackermann numbers''' to be 1↑1, 2↑↑2, 3↑↑↑3, etc.;<ref>John Horton Conway and Richard K. Guy. [http://books.google.com/books?id=0--3rcO7dMYC&lpg=PA60&dq=%22Ackermann%20number%22&pg=PA60#v=onepage&q=%22Ackermann%20number%22&f=false ''The Book of Numbers'']. New York: Springer-Verlag, pp. 60-61, 1996. ISBN 978-0-387-97993-9</ref> that is, the n-th Ackermann number is defined to be n↑<sup>n</sup>n (''n'' = 1, 2, 3, ...), where m↑<sup>k</sup>n is [[Knuth's up-arrow notation|Knuth's up-arrow]] version of the Ackermann function.
 
The first few Ackermann numbers are:
:* 1↑1 = 1<sup>1</sup> = 1,
:* 2↑↑2 = 2↑2 = 2<sup>2</sup> = 4,
:* 3↑↑↑3 = 3↑↑3↑↑3 = 3↑↑(3↑3↑3) = <math>3\uparrow\uparrow3^{3^3} = 3\uparrow\uparrow7625597484987 = \underbrace{3^{3^{3^{3^{.^{.^{.^{3}}}}}}}}_{7625597484987{\rm\ threes}}</math>
 
The fourth Ackermann number, 4↑↑↑↑4, can be written in terms of [[tetration]] towers as follows:
 
:4↑↑↑↑4 = 4↑↑↑4↑↑↑4↑↑↑4 = 4↑↑↑4↑↑↑(4↑↑4↑↑4↑↑4)
:::<math> = \underbrace{~~^{^{^{^{^{^{^{^{4}.}.}.}4}4}4}4}4~~}_{\underbrace{~^{^{^{^{^{4}.}.}.}4}4~}_{^{^{^{4}4}4}4 {\rm\ fours}} {\rm fours}}</math>
 
Explanation: in the middle layer, there is a tower of tetration whose full height is <math>^{^{^{4}4}4}4</math> and the final result is the top layer of tetrated 4s whose full height equals the calculation of the middle layer. Note that by way of size comparison, the simple expression <sup>4</sup>4 already exceeds a [[googolplex]], so the fourth Ackermann number is quite large.
 
Alternatively, this can be written in terms of [[exponentiation]] towers as
:<math>4\uparrow\uparrow\uparrow\uparrow 4 = </math>
:<math>\quad</math>
:<math>
\left.
\begin{matrix} 4^{4^{\cdot^{\cdot^{\cdot^{\cdot^{4}}}}}}\end{matrix}
\right \}
\left.
\begin{matrix}4^{4^{\cdot^{\cdot^{\cdot^{4}}}}}\end{matrix}
\right \}
\dots
\left.
\begin{matrix}4^{4^{4^4}}\end{matrix}
\right \}
4,
</math>
:where the number of towers on the previous line (including the rightmost "4") is
:<math>
\left.
\begin{matrix}4^{4^{\cdot^{\cdot^{\cdot^{\cdot^{4}}}}}}\end{matrix}
\right \}
\left.
\begin{matrix}4^{4^{\cdot^{\cdot^{\cdot^{4}}}}}\end{matrix}
\right \}
\dots
\left.
\begin{matrix}4^{4^{4^4}}\end{matrix}
\right \}
4,
</math>
:where the number of towers on the previous line (including the rightmost "4") is
:<math>
\left.
\begin{matrix}4^{4^{\cdot^{\cdot^{\cdot^{4}}}}}\end{matrix}
\right \}
\left.
\begin{matrix}4^{4^{\cdot^{\cdot^{\cdot^{4}}}}}\end{matrix}
\right \}
\left.
\begin{matrix}4^{4^{4^4}}\end{matrix}
\right \}
4,
</math>
where the number of "4"s in each tower, on each of the lines above, is specified by the value of the next tower to its right (as indicated by a brace).
 
==See also==
<!-- keep alphabetical -->
* [[Computability theory]]
* [[Double recursion]]
* [[Fast-growing hierarchy]]
* [[Primitive recursive function]]
* [[Recursion (computer science)]]
<!-- keep alphabetical -->
 
==References==
{{reflist|2}}
 
==External links==
* {{springer|title=Ackermann function|id=p/a120110}}
* {{mathworld | urlname = AckermannFunction | title = Ackermann function}}
* {{DADS|Ackermann's function|ackermann}}
* [http://www.gfredericks.com/main/sandbox/arith/ackermann An animated Ackermann function calculator]
* [[Scott Aaronson]], ''[http://www.scottaaronson.com/writings/bignumbers.html Who can name the biggest number?]'' (1999)
* [http://www-users.cs.york.ac.uk/~susan/cyc/a/ackermnn.htm Ackermann function's]. Includes a table of some values.
* [http://forum.wolframscience.com/showthread.php?s=&threadid=579 Hyper-operations: Ackermann's Function and New Arithmetical Operation]
* [http://www.mrob.com/pub/math/largenum.html Robert Munafo's Large Numbers] describes several variations on the definition of ''A''.
* Gabriel Nivasch, [http://www.yucs.org/~gnivasch/alpha/index.html Inverse Ackermann without pain] on the inverse Ackermann function.
* Raimund Seidel, ''[http://cgi.di.uoa.gr/~ewcg06/invited/Seidel.pdf Understanding the inverse Ackermann function]'' (PDF presentation).
* [http://rosettacode.org/wiki/Ackermann_Function The Ackermann function written in different programming languages], (on [[Rosetta Code]])
* [http://www.geocities.com/hjsmithh/Ackerman/index.html Ackermann's Function] ([http://www.webcitation.org/5km8K6GSP Archived] 2009-10-24) &mdash; Some study and programming by Harry J. Smith.
 
{{DEFAULTSORT:Ackermann Function}}
[[Category:Arithmetic]]
[[Category:Large integers]]
[[Category:Special functions]]
[[Category:Theory of computation]]
[[Category:Computability theory]]
 
{{Link FA|de}}
{{Link FA|es}}

Latest revision as of 15:23, 11 January 2015

My name: Debora Leavitt
My age: 40
Country: Italy
Town: Campremoldo Sopra E Sotto
Post code: 29010
Street: Via Torino 46

Here is my website: thrombosed external hemorrhoid