Reference class problem: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
 
en>Omnipaedista
 
Line 1: Line 1:
A [[voting system]] is '''consistent''' if, when the electorate is divided arbitrarily into two (or more) parts and separate elections in each part result in the same choice being selected, an election of the entire electorate also selects that alternative. Smith{{ref|Smith}} calls this property '''separability''' and Woodall{{ref|Woodall}} calls it '''convexity'''.
55 year-old Paediatrician Bykowski from Provost, has many passions including legos, property developers in singapore and dolls. Wants to travel and was enthused after making buying a property in singapore ([http://www.donorcall.com/UserProfile/tabid/662/userId/369160/Default.aspx pop over to this site]) journey to Bikini Atoll Nuclear Test Site.
 
It has been proven a [[Ranked voting systems|ranked voting system]] is consistent if and only if it is a [[positional voting system]].{{ref|Young}}{{Request quotation|date=January 2012}} [[Borda count]] is an example of this.
 
The failure of the consistency criterion can be seen as an example of [[Simpson's paradox]].
 
{{TOC limit|limit=3}}
 
== Examples ==
 
=== Copeland ===
{{Main|Copeland's method}}
 
This example shows that Copeland's method violates the Consistency criterion. Assume five candidates A, B, C, D and E with 27 voters with the following preferences:
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 3          || A > D > B > E > C
|-
| 2          || A > D > E > C > B
|-
| 3          || B > A > C > D > E
|-
| 3          || C > D > B > E > A
|-
| 3          || E > C > B > A > D
|-
| style="border-top: 3pt black solid"|3          || style="border-top: 3pt black solid"|A > D > C > E > B
|-
| 1          || A > D > E > B > C
|-
| 3          || B > D > C > E > A
|-
| 3          || C > A > B > D > E
|-
| 3          || E > B > C > A > D
|}
 
Now, the set of all voters is divided into two groups at the bold line. The voters over the line are the first group of voters; the others are the second group of voters.
 
==== First group of voters ====
In the following the Copeland winner for the first group of voters is determined.
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 3          || A > D > B > E > C
|-
| 2          || A > D > E > C > B
|-
| 3          || B > A > C > D > E
|-
| 3          || C > D > B > E > A
|-
| 3          || E > C > B > A > D
|}
 
The results would be tabulated as follows:
{| class=wikitable border=1
|+ Pairwise Preferences
|-
| colspan=2 rowspan=2 |
| colspan=5 bgcolor="#c0c0ff" align=center | X
|-
| bgcolor="#c0c0ff" | A
| bgcolor="#c0c0ff" | B
| bgcolor="#c0c0ff" | C
| bgcolor="#c0c0ff" | D
| bgcolor="#c0c0ff" | E
|-
| bgcolor="#ffc0c0" rowspan=5 | Y
| bgcolor="#ffc0c0" | A
|
| bgcolor="#e0e0ff" | [X] 9 <br>[Y] 5
| bgcolor="#ffe0e0" | [X] 6 <br/>[Y] 8
| bgcolor="#ffe0e0" | [X] 3 <br>[Y] 11
| bgcolor="#ffe0e0" | [X] 6 <br>[Y] 8
|-
| bgcolor="#ffc0c0" | B
| bgcolor="#ffe0e0" | [X] 5 <br>[Y] 9
|
| bgcolor="#e0e0ff" | [X] 8 <br>[Y] 6
| bgcolor="#e0e0ff" | [X] 8 <br>[Y] 6
| bgcolor="#ffe0e0" | [X] 5 <br>[Y] 9
|-
| bgcolor="#ffc0c0" | C
| bgcolor="#e0e0ff" | [X] 8 <br>[Y] 6
| bgcolor="#ffe0e0" | [X] 6 <br>[Y] 8
|
| bgcolor="#ffe0e0" | [X] 5 <br>[Y] 9
| bgcolor="#e0e0ff" | [X] 8 <br>[Y] 6
|-
| bgcolor="#ffc0c0" | D
| bgcolor="#e0e0ff" | [X] 11 <br>[Y] 3
| bgcolor="#ffe0e0" | [X] 6 <br>[Y] 8
| bgcolor="#e0e0ff" | [X] 9 <br>[Y] 5
|
| bgcolor="#ffe0e0" | [X] 3 <br>[Y] 11
|-
| bgcolor="#ffc0c0" | E
| bgcolor="#e0e0ff" | [X] 8 <br>[Y] 6
| bgcolor="#e0e0ff" | [X] 9 <br>[Y] 5
| bgcolor="#ffe0e0" | [X] 6 <br>[Y] 8
| bgcolor="#e0e0ff" | [X] 11 <br>[Y] 3
|
|-
| colspan=2 bgcolor="#c0c0ff" | Pairwise election results (won-tied-lost):
| 3-0-1
| 2-0-2
| 2-0-2
| 2-0-2
| 1-0-3
|}
 
* [X] indicates voters who preferred the candidate listed in the column caption to the candidate listed in the row caption
* [Y] indicates voters who preferred the candidate listed in the row caption to the candidate listed in the column caption
 
'''Result''': With the votes of the first group of voters, A can defeat three of the four opponents, whereas no other candidate wins against more than two opponents. Thus, '''A''' is elected Copeland winner by the first group of voters.
 
==== Second group of voters ====
Now, the Copeland winner for the second group of voters is determined.
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 3          || A > D > C > E > B
|-
| 1          || A > D > E > B > C
|-
| 3          || B > D > C > E > A
|-
| 3          || C > A > B > D > E
|-
| 3          || E > B > C > A > D
|}
 
The results would be tabulated as follows:
{| class=wikitable border=1
|+ Pairwise election results
|-
| colspan=2 rowspan=2 |
| colspan=5 bgcolor="#c0c0ff" align=center | X
|-
| bgcolor="#c0c0ff" | A
| bgcolor="#c0c0ff" | B
| bgcolor="#c0c0ff" | C
| bgcolor="#c0c0ff" | D
| bgcolor="#c0c0ff" | E
|-
| bgcolor="#ffc0c0" rowspan=5 | Y
| bgcolor="#ffc0c0" | A
|
| bgcolor="#ffe0e0" | [X] 6 <br/>[Y] 7
| bgcolor="#e0e0ff" | [X] 9 <br>[Y] 4
| bgcolor="#ffe0e0" | [X] 3 <br>[Y] 10
| bgcolor="#ffe0e0" | [X] 6 <br>[Y] 7
|-
| bgcolor="#ffc0c0" | B
| bgcolor="#e0e0ff" | [X] 7 <br>[Y] 6
|
| bgcolor="#ffe0e0" | [X] 6 <br>[Y] 7
| bgcolor="#ffe0e0" | [X] 4 <br>[Y] 9
| bgcolor="#e0e0ff" | [X] 7 <br>[Y] 6
|-
| bgcolor="#ffc0c0" | C
| bgcolor="#ffe0e0" | [X] 4 <br>[Y] 9
| bgcolor="#e0e0ff" | [X] 7 <br>[Y] 6
|
| bgcolor="#e0e0ff" | [X] 7 <br>[Y] 6
| bgcolor="#ffe0e0" | [X] 4 <br>[Y] 9
|-
| bgcolor="#ffc0c0" | D
| bgcolor="#e0e0ff" | [X] 10 <br>[Y] 3
| bgcolor="#e0e0ff" | [X] 9 <br>[Y] 4
| bgcolor="#ffe0e0" | [X] 6 <br>[Y] 7
|
| bgcolor="#ffe0e0" | [X] 3 <br>[Y] 10
|-
| bgcolor="#ffc0c0" | E
| bgcolor="#e0e0ff" | [X] 7 <br>[Y] 6
| bgcolor="#ffe0e0" | [X] 6 <br>[Y] 7
| bgcolor="#e0e0ff" | [X] 9 <br>[Y] 4
| bgcolor="#e0e0ff" | [X] 10 <br>[Y] 3
|
|-
| colspan=2 bgcolor="#c0c0ff" | Pairwise election results (won-tied-lost):
| 3-0-1
| 2-0-2
| 2-0-2
| 2-0-2
| 1-0-3
|}
 
'''Result''': Taking only the votes of the second group in account, again, A can defeat three of the four opponents, whereas no other candidate wins against more than two opponents.  Thus, '''A''' is elected Copeland winner by the second group of voters.
 
==== All voters ====
Finally, the Copeland winner of the complete set of voters is determined.
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 3          || A > D > B > E > C
|-
| 3          || A > D > C > E > B
|-
| 1          || A > D > E > B > C
|-
| 2          || A > D > E > C > B
|-
| 3          || B > A > C > D > E
|-
| 3          || B > D > C > E > A
|-
| 3          || C > A > B > D > E
|-
| 3          || C > D > B > E > A
|-
| 3          || E > B > C > A > D
|-
| 3          || E > C > B > A > D
|}
 
The results would be tabulated as follows:
{| class=wikitable border=1
|+ Pairwise election results
|-
| colspan=2 rowspan=2 |
| colspan=5 bgcolor="#c0c0ff" align=center | X
|-
| bgcolor="#c0c0ff" | A
| bgcolor="#c0c0ff" | B
| bgcolor="#c0c0ff" | C
| bgcolor="#c0c0ff" | D
| bgcolor="#c0c0ff" | E
|-
| bgcolor="#ffc0c0" rowspan=5 | Y
| bgcolor="#ffc0c0" | A
|
| bgcolor="#e0e0ff" | [X] 15 <br>[Y] 12
| bgcolor="#e0e0ff" | [X] 15 <br>[Y] 12
| bgcolor="#ffe0e0" | [X] 6 <br>[Y] 21
| bgcolor="#ffe0e0" | [X] 12 <br>[Y] 15
|-
| bgcolor="#ffc0c0" | B
| bgcolor="#ffe0e0" | [X] 12 <br>[Y] 15
|
| bgcolor="#e0e0ff" | [X] 14 <br>[Y] 13
| bgcolor="#ffe0e0" | [X] 12 <br>[Y] 15
| bgcolor="#ffe0e0" | [X] 12 <br>[Y] 15
|-
| bgcolor="#ffc0c0" | C
| bgcolor="#ffe0e0" | [X] 12 <br>[Y] 15
| bgcolor="#ffe0e0" | [X] 13 <br>[Y] 14
|
| bgcolor="#ffe0e0" | [X] 12 <br>[Y] 15
| bgcolor="#ffe0e0" | [X] 12 <br>[Y] 15
|-
| bgcolor="#ffc0c0" | D
| bgcolor="#e0e0ff" | [X] 21 <br>[Y] 6
| bgcolor="#e0e0ff" | [X] 15 <br>[Y] 12
| bgcolor="#e0e0ff" | [X] 15 <br>[Y] 12
|
| bgcolor="#ffe0e0" | [X] 6 <br>[Y] 21
|-
| bgcolor="#ffc0c0" | E
| bgcolor="#e0e0ff" | [X] 15 <br>[Y] 12
| bgcolor="#e0e0ff" | [X] 15 <br>[Y] 12
| bgcolor="#e0e0ff" | [X] 15 <br>[Y] 12
| bgcolor="#e0e0ff" | [X] 21 <br>[Y] 6
|
|-
| colspan=2 bgcolor="#c0c0ff" | Pairwise election results (won-tied-lost):
| 2-0-2
| 3-0-1
| 4-0-0
| 1-0-3
| 0-0-4
|}
 
'''Result''': C is the Condorcet winner, thus Copeland chooses '''C''' as winner.
 
==== Conclusion ====
A is the Copeland winner within the first group of voters and also within the second group of voters. However, both groups combined elect C as the Copeland winner. Thus, Copeland fails the Consistency criterion.
 
=== Instant-runoff voting ===
{{Main|Instant-runoff voting}}
 
This example shows that Instant-runoff voting violates the Consistency criterion. Assume three candidates A, B and C and 23 voters with the following preferences:
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 4          || A > B > C
|-
| 2          || B > A > C
|-
| 4          || C > B > A
|-
| style="border-top: 3pt black solid"|4          || style="border-top: 3pt black solid"|A > B > C
|-
| 6          || B > A > C
|-
| 3          || C > A > B
|}
 
Now, the set of all voters is divided into two groups at the bold line. The voters over the line are the first group of voters; the others are the second group of voters.
 
==== First group of voters ====
In the following the instant-runoff winner for the first group of voters is determined.
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 4          || A > B > C
|-
| 2          || B > A > C
|-
| 4          || C > B > A
|}
 
B has only 2 votes and is eliminated first. Its votes are transferred to A. Now, A has 6 votes and wins against C with 4 votes.
{| class="wikitable"
|-
!Votes in round/<br />Candidate !! 1st !! 2nd
|-
| A || bgcolor=#ddffbb|4 || bgcolor=#bbffbb|'''6'''
|-
| B || bgcolor=#ffbbbb|''2''
|-
| C || bgcolor=#ddffbb|4 || bgcolor=#ffbbbb|''4''
|}
 
'''Result''': '''A''' wins against C, after B has been eliminated.
 
==== Second group of voters ====
Now, the instant-runoff winner for the second group of voters is determined.
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 4          || A > B > C
|-
| 6          || B > A > C
|-
| 3          || C > A > B
|}
 
C has the least votes count of 3 and is eliminated. A benefits from that, gathering all the votes from C. Now, with 7 votes A wins against B with 6 votes.
{| class="wikitable"
|-
!Votes in round/<br />Candidate !! 1st !! 2nd
|-
| A || bgcolor=#ddffbb|4 || bgcolor=#bbffbb|'''7'''
|-
| B || bgcolor=#ddffbb|6 || bgcolor=#ffbbbb|''6''
|-
| C || bgcolor=#ffbbbb|''3''
|}
 
'''Result''': '''A''' wins against B, after C has been eliminated.
 
==== All voters ====
Finally, the instant runoff winner of the complete set of voters is determined.
 
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 8          || A > B > C
|-
| 8          || B > A > C
|-
| 3          || C > A > B
|-
| 4          || C > B > A
|}
 
C has the least first preferences and so is eliminated first, its votes are split: 4 are transferred to B and 3 to A. Thus, B wins with 12 votes against 11 votes of A.
{| class="wikitable"
|-
!Votes in round/<br />Candidate !! 1st !! 2nd
|-
| A || bgcolor=#ddffbb|8 || bgcolor=#ffbbbb|''11''
|-
| B || bgcolor=#ddffbb|8 || bgcolor=#bbffbb|'''12'''
|-
| C || bgcolor=#ffbbbb|''7''
|}
 
'''Result''': '''B''' wins against A, after C is eliminated.
 
==== Conclusion ====
A is the instant-runoff winner within the first group of voters and also within the second group of voters. However, both groups combined elect B as the instant-runoff winner. Thus, instant-runoff voting fails the Consistency criterion.
 
=== Kemeny–Young method ===
{{Main|Kemeny–Young method}}
 
This example shows that the Kemeny–Young method violates the Consistency criterion. Assume three candidates A, B and C and 38 voters with the following preferences:
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 7          || A > B > C
|-
| 6          || B > C > A
|-
| 3          || C > A > B
|-
| style="border-top: 3pt black solid"|8          || style="border-top: 3pt black solid"|A > C > B
|-
| 7          || B > A > C
|-
| 7          || C > B > A
|}
 
Now, the set of all voters is divided into two groups at the bold line. The voters over the line are the first group of voters; the others are the second group of voters.
 
==== First group of voters ====
In the following the Kemeny-Young winner for the first group of voters is determined.
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 7          || A > B > C
|-
| 6          || B > C > A
|-
| 3          || C > A > B
|}
 
The Kemeny–Young method arranges the pairwise comparison counts in the following tally table:
 
{| class="wikitable"
|-
! colspan=2 rowspan=2|All possible pairs<br/>of choice names !! colspan=3|Number of votes with indicated preference
|-
!                                                              Prefer X over Y !! Equal preference !! Prefer Y over X
|-
| X = A || Y = B                                            || 10              || 0                || 6
|-
| X = A || Y = C                                            ||  7              || 0                || 9
|-
| X = B || Y = C                                            || 13              || 0                || 3
|}
 
The ranking scores of all possible rankings are:
{| class="wikitable"
|-
! Preferences !! 1. vs 2. !! 1. vs 3. !! 2. vs 3. !! Total
|-
| A > B > C  || 10      ||  7      || 13      || bgcolor=#bbffbb|'''30'''
|-
| A > C > B  ||  7      || 10      ||  3      || bgcolor=#ffbbbb|''20''
|-
| B > A > C  ||  6      || 13      ||  7      || bgcolor=#ffbbbb|''26''
|-
| B > C > A  || 13      ||  6      ||  9      || bgcolor=#ffbbbb|''28''
|-
| C > A > B  ||  9      ||  3      || 10      || bgcolor=#ffbbbb|''22''
|-
| C > B > A  ||  3      ||  9      ||  6      || bgcolor=#ffbbbb|''18''
|}
 
'''Result''': The ranking A > B > C has the highest ranking score. Thus, '''A''' wins ahead of B and C.
 
==== Second group of voters ====
Now, the Kemeny-Young winner for the second group of voters is determined.
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 8          || A > C > B
|-
| 7          || B > A > C
|-
| 7          || C > B > A
|}
 
The Kemeny–Young method arranges the pairwise comparison counts in the following tally table:
 
{| class="wikitable"
|-
! colspan=2 rowspan=2|All possible pairs<br/>of choice names !! colspan=3|Number of votes with indicated preference
|-
!                                                              Prefer X over Y !! Equal preference !! Prefer Y over X
|-
| X = A || Y = B                                            ||  8              || 0                || 14
|-
| X = A || Y = C                                            || 15              || 0                ||  7
|-
| X = B || Y = C                                            ||  7              || 0                || 15
|}
 
The ranking scores of all possible rankings are:
{| class="wikitable"
|-
! Preferences !! 1. vs 2. !! 1. vs 3. !! 2. vs 3. !! Total
|-
| A > B > C  ||  8      || 15      ||  7      || bgcolor=#ffbbbb|''30''
|-
| A > C > B  || 15      ||  8      || 15      || bgcolor=#bbffbb|'''38'''
|-
| B > A > C  || 14      ||  7      || 15      || bgcolor=#ffbbbb|''36''
|-
| B > C > A  ||  7      || 14      ||  7      || bgcolor=#ffbbbb|''28''
|-
| C > A > B  ||  7      || 15      ||  8      || bgcolor=#ffbbbb|''30''
|-
| C > B > A  || 15      ||  7      || 14      || bgcolor=#ffbbbb|''36''
|}
 
'''Result''': The ranking A > C > B has the highest ranking score. Hence, '''A''' wins ahead of C and B.
 
==== All voters ====
Finally, the Kemeny-Young winner of the complete set of voters is determined.
 
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 7          || A > B > C
|-
| 8          || A > C > B
|-
| 7          || B > A > C
|-
| 6          || B > C > A
|-
| 3          || C > A > B
|-
| 7          || C > B > A
|}
 
The Kemeny–Young method arranges the pairwise comparison counts in the following tally table:
 
{| class="wikitable"
|-
! colspan=2 rowspan=2|All possible pairs<br/>of choice names !! colspan=3|Number of votes with indicated preference
|-
!                                                              Prefer X over Y !! Equal preference !! Prefer Y over X
|-
| X = A || Y = B                                            || 18              || 0                || 20
|-
| X = A || Y = C                                            || 22              || 0                || 16
|-
| X = B || Y = C                                            || 20              || 0                || 18
|}
 
The ranking scores of all possible rankings are:
{| class="wikitable"
|-
! Preferences !! 1. vs 2. !! 1. vs 3. !! 2. vs 3. !! Total
|-
| A > B > C  || 18      || 22      || 20      || bgcolor=#ffbbbb|''60''
|-
| A > C > B  || 22      || 18      || 18      || bgcolor=#ffbbbb|''58''
|-
| B > A > C  || 20      || 20      || 22      || bgcolor=#bbffbb|'''62'''
|-
| B > C > A  || 20      || 20      || 16      || bgcolor=#ffbbbb|''56''
|-
| C > A > B  || 16      || 18      || 18      || bgcolor=#ffbbbb|''52''
|-
| C > B > A  || 18      || 16      || 20      || bgcolor=#ffbbbb|''54''
|}
 
'''Result''': The ranking B > A > C has the highest ranking score. So, '''B''' wins ahead of A and C.
 
==== Conclusion ====
A is the Kemeny-Young winner within the first group of voters and also within the second group of voters. However, both groups combined elect B as the Kemeny-Young winner. Thus, the Kemeny–Young method fails the Consistency criterion.
 
==== Ranking consistency ====
The Kemeny-Young method satisfies ranking consistency, that is if the electorate is divided arbitrarily into two parts and separate elections in each part result in the same ranking being selected, an election of the entire electorate also selects that ranking.
 
===== Informal proof =====
The Kemeny-Young score of a ranking <math>\mathcal{R}</math> is computed by summing up the number of pairwise comparisons on each ballot that match the ranking <math>\mathcal{R}</math>. Thus, the Kemeny-Young score <math>s_V(\mathcal{R})</math> for an electorate <math>V</math> can be computed by separating the electorate into disjoint subsets <math>V = V_1 \cup V_2</math> (with <math>V_1 \cap V_2 = \emptyset</math>), computing the Kemeny-Young scores for these subsets and adding it up:
::<math>(I) \quad s_V(\mathcal{R}) = s_{V_1}(\mathcal{R}) + s_{V_2}(\mathcal{R})</math>.
 
Now, consider an election with electorate <math>V</math>. The premise of the consistency criterion is to divide the electorate arbitrarily into two parts <math>V = V_1 \cup V_2</math>, and in each part the same ranking <math>\mathcal{R}</math> is selected. This means, that the Kemeny-Young score for the ranking <math>\mathcal{R}</math> in each electorate is bigger than for every other ranking <math>\mathcal{R}'</math>:
::<math>(II) \quad \forall \mathcal{R}' : s_{V_1}(\mathcal{R}) > s_{V_1}(\mathcal{R}') </math> and
::<math>(III) \quad \forall \mathcal{R}' : s_{V_2}(\mathcal{R}) > s_{V_2}(\mathcal{R}') </math>.
 
Now, it has to be shown, that the Kemeny-Young score of the ranking <math>\mathcal{R}</math> in the entire electorate is bigger than the Kemeny-Young score of every other ranking <math>\mathcal{R}'</math>:
::<math>s_V(\mathcal{R}) \stackrel{(I)}{=} s_{V_1}(\mathcal{R}) + s_{V_2}(\mathcal{R}) \stackrel{(II)}{>} s_{V_1}(\mathcal{R}') + s_{V_2}(\mathcal{R}) \stackrel{(III)}{>} s_{V_1}(\mathcal{R}') + s_{V_2}(\mathcal{R}') \stackrel{(I)}{=} s_V(\mathcal{R}') \quad q.e.d.</math>
Thus, the Kemeny-Young method is consistent respective rankings.
 
=== Majority Judgment ===
{{Main|Majority Judgment}}
 
This example shows that Majority Judgment violates the Consistency criterion. Assume two candidates A and B and 10 voters with the following ratings:
{| class="wikitable"
|-
! Candidates/<br /># of voters !! A !! B
|-
| 3          || bgcolor="green"|Excellent || bgcolor="yellow"|Fair
|-
| 2          || bgcolor="orangered"|Poor || bgcolor="yellow"| Fair
|-
| style="border-top: 3pt black solid"|3 || style="border-top: 3pt black solid" bgcolor="yellow"|Fair || style="border-top: 3pt black solid" bgcolor="orangered"|Poor
|-
| 2          || bgcolor="orangered"|Poor || bgcolor="yellow"|Fair
|}
 
Now, the set of all voters is divided into two groups at the bold line. The voters over the line are the first group of voters; the others are the second group of voters.
 
==== First group of voters ====
In the following the Majority judgment winner for the first group of voters is determined.
{| class="wikitable"
|-
! Candidates/<br /># of voters !! A !! B
|-
| 3          || bgcolor="green"|Excellent || bgcolor="yellow"|Fair
|-
| 2          || bgcolor="orangered"|Poor || bgcolor="yellow"|Fair
|}
 
The sorted ratings would be as follows:
{|
|-
| align=right | Candidate&nbsp;&nbsp;&nbsp;
|
{| cellpadding=0 width=500 border=0 cellspacing=0
|-
| width=49% | &nbsp;
| width=2% textalign=center | ↓
| width=49% | Median point
|}
|-
| align=right | A
|
{| cellpadding=0 width=500 border=0 cellspacing=0
|-
| bgcolor=green width=60% | &nbsp;
| bgcolor=orangered width=40% |
|}
|-
| align=right | B
|
{| cellpadding=0 width=500 border=0 cellspacing=0
|-
| bgcolor=yellow width=100% | &nbsp;
|}
|-
| &nbsp;
| &nbsp;
|-
| &nbsp;
|
{| cellpadding=1 border=0 cellspacing=1
|-
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
| bgcolor=green | &nbsp;
| &nbsp;Excellent&nbsp;&nbsp;
| bgcolor=YellowGreen | &nbsp;
| &nbsp;Good&nbsp;&nbsp;
| bgcolor=Yellow | &nbsp;
| &nbsp;Fair&nbsp;&nbsp;
| bgcolor=Orangered | &nbsp;
| &nbsp;Poor&nbsp;&nbsp;
|}
|}
 
'''Result''': With the votes of the first group of voters, A has the median rating of "Excellent" and B has the median rating of "Fair". Thus, '''A''' is elected Majority Judgment winner by the first group of voters.
 
==== Second group of voters ====
Now, the Majority Judgment winner for the second group of voters is determined.
{| class="wikitable"
|-
! Candidates/<br /># of voters !! A !! B
|-
| 3 || bgcolor="yellow"|Fair || bgcolor="orangered"|Poor
|-
| 2          || bgcolor="orangered"|Poor || bgcolor="yellow"|Fair
|}
 
The sorted ratings would be as follows:
{|
|-
| align=right | Candidate&nbsp;&nbsp;&nbsp;
|
{| cellpadding=0 width=500 border=0 cellspacing=0
|-
| width=49% | &nbsp;
| width=2% textalign=center | ↓
| width=49% | Median point
|}
|-
| align=right | A
|
{| cellpadding=0 width=500 border=0 cellspacing=0
|-
| bgcolor=yellow width=60% | &nbsp;
| bgcolor=orangered width=40% |
|}
|-
| align=right | B
|
{| cellpadding=0 width=500 border=0 cellspacing=0
|-
| bgcolor=yellow width=40% | &nbsp;
| bgcolor=orangered width=60% |
|}
|-
| &nbsp;
| &nbsp;
|-
| &nbsp;
|
{| cellpadding=1 border=0 cellspacing=1
|-
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
| bgcolor=green | &nbsp;
| &nbsp;Excellent&nbsp;&nbsp;
| bgcolor=YellowGreen | &nbsp;
| &nbsp;Good&nbsp;&nbsp;
| bgcolor=Yellow | &nbsp;
| &nbsp;Fair&nbsp;&nbsp;
| bgcolor=Orangered | &nbsp;
| &nbsp;Poor&nbsp;&nbsp;
|}
|}
 
'''Result''': Taking only the votes of the second group in account, A has the median rating of "Fair" and B the median rating of "Poor". Thus, '''A''' is elected Majority Judgment winner by the second group of voters.
 
==== All voters ====
Finally, the Majority Judgment winner of the complete set of voters is determined.
{| class="wikitable"
|-
! Candidates/<br /># of voters !! A !! B
|-
| 3          || bgcolor="green"|Excellent || bgcolor="yellow"|Fair
|-
| 3          || bgcolor="yellow"|Fair || bgcolor="orangered"|Poor
|-
| 4          || bgcolor="orangered"|Poor || bgcolor="yellow"|Fair
|}
 
The sorted ratings would be as follows:
{|
|-
| align=right | Candidate&nbsp;&nbsp;&nbsp;
|
{| cellpadding=0 width=500 border=0 cellspacing=0
|-
| width=49% | &nbsp;
| width=2% textalign=center | ↓
| width=49% | Median point
|}
|-
| align=right | A
|
{| cellpadding=0 width=500 border=0 cellspacing=0
|-
| bgcolor=green width=30% | &nbsp;
| bgcolor=yellow width=30% | &nbsp;
| bgcolor=orangered width=40% |
|}
|-
| align=right | B
|
{| cellpadding=0 width=500 border=0 cellspacing=0
|-
| bgcolor=yellow width=70% | &nbsp;
| bgcolor=orangered width=30% |
|}
|-
| &nbsp;
| &nbsp;
|-
| &nbsp;
|
{| cellpadding=1 border=0 cellspacing=1
|-
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
| bgcolor=green | &nbsp;
| &nbsp;Excellent&nbsp;&nbsp;
| bgcolor=YellowGreen | &nbsp;
| &nbsp;Good&nbsp;&nbsp;
| bgcolor=Yellow | &nbsp;
| &nbsp;Fair&nbsp;&nbsp;
| bgcolor=Orangered | &nbsp;
| &nbsp;Poor&nbsp;&nbsp;
|}
|}
 
The median ratings for A and B are both "Fair". Since there is a tie, "Fair" ratings are removed from both, until their medians become different. After removing 20% "Fair" ratings from the votes of each, the sorted ratings are now:
{|
|-
| align=right | Candidate&nbsp;&nbsp;&nbsp;
|
{| cellpadding=0 width=500 border=0 cellspacing=0
|-
| width=49% | &nbsp;
| width=2% textalign=center | ↓
| width=49% | Median point
|}
|-
| align=right | A
|
{| cellpadding=0 width=500 border=0 cellspacing=0
|-
| bgcolor=gray width=10% | &nbsp;
| bgcolor=green width=30% | &nbsp;
| bgcolor=yellow width=10% | &nbsp;
| bgcolor=orangered width=40% |
 
| bgcolor=gray width=10% |
|}
|-
| align=right | B
|
{| cellpadding=0 width=500 border=0 cellspacing=0
|-
| bgcolor=gray width=10% |
| bgcolor=yellow width=50% | &nbsp;
| bgcolor=orangered width=30% |
 
| bgcolor=gray width=10% |
|}
|}
 
'''Result''': Now, the median rating of A is "Poor" and the median rating of B is "Fair". Thus, '''B''' is elected Majority Judgment winner.
 
==== Conclusion ====
A is the Majority Judgment winner within the first group of voters and also within the second group of voters. However, both groups combined elect B as the Majority Judgment winner. Thus, Majority Judgment fails the Consistency criterion.
 
=== Minimax ===
{{Main|Minimax Condorcet}}
 
This example shows that the Minimax method violates the Consistency criterion. Assume four candidates A, B, C and D with 43 voters with the following preferences:
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 1          || A > B > C > D
|-
| 6          || A > D > B > C
|-
| 5          || B > C > D > A
|-
| 6          || C > D > B > A
|-
| style="border-top: 3pt black solid"|8          || style="border-top: 3pt black solid"|A > B > D > C
|-
| 2          || A > D > C > B
|-
| 9          || C > B > D > A
|-
| 6          || D > C > B > A
|}
 
Since all preferences are strict rankings (no equals are present), all three Minimax methods (winning votes, margins and pairwise opposite) elect the same winners.
 
Now, the set of all voters is divided into two groups at the bold line. The voters over the line are the first group of voters; the others are the second group of voters.
 
==== First group of voters ====
In the following the Minimax winner for the first group of voters is determined.
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 1          || A > B > C > D
|-
| 6          || A > D > B > C
|-
| 5          || B > C > D > A
|-
| 6          || C > D > B > A
|}
 
The results would be tabulated as follows:
{| class=wikitable border=1
|+ Pairwise election results
|-
| colspan=2 rowspan=2 |
| colspan=4 bgcolor="#c0c0ff" align=center | X
|-
| bgcolor="#c0c0ff" | A
| bgcolor="#c0c0ff" | B
| bgcolor="#c0c0ff" | C
| bgcolor="#c0c0ff" | D
|-
| bgcolor="#ffc0c0" rowspan=4 | Y
| bgcolor="#ffc0c0" | A
|
| bgcolor="#e0e0ff" | [X] 11 <br/>[Y] 7
| bgcolor="#e0e0ff" | [X] 11 <br/>[Y] 7
| bgcolor="#e0e0ff" | [X] 11 <br/>[Y] 7
|-
| bgcolor="#ffc0c0" | B
| bgcolor="#ffe0e0" | [X] 7 <br>[Y] 11
|
| bgcolor="#ffe0e0" | [X] 6 <br>[Y] 12
| bgcolor="#e0e0ff" | [X] 12 <br>[Y] 6
|-
| bgcolor="#ffc0c0" | C
| bgcolor="#ffe0e0" | [X] 7 <br>[Y] 11
| bgcolor="#e0e0ff" | [X] 12 <br>[Y] 6
|
| bgcolor="#ffe0e0" | [X] 6 <br>[Y] 12
|-
| bgcolor="#ffc0c0" | D
| bgcolor="#ffe0e0" | [X] 7 <br>[Y] 11
| bgcolor="#ffe0e0" | [X] 6 <br>[Y] 12
| bgcolor="#e0e0ff" | [X] 12 <br>[Y] 6
|
|-
| colspan=2 bgcolor="#c0c0ff" | Pairwise election results (won-tied-lost):
| 0-0-3
| 2-0-1
| 2-0-1
| 2-0-1
|-
| colspan=2 bgcolor="#c0c0ff" | worst pairwise defeat (winning votes):
| bgcolor=#bbffbb|'''11'''
| bgcolor=#ffbbbb|''12''
| bgcolor=#ffbbbb|''12''
| bgcolor=#ffbbbb|''12''
|-
| colspan=2 bgcolor="#c0c0ff" | worst pairwise defeat (margins):
| bgcolor=#bbffbb|'''4'''
| bgcolor=#ffbbbb|''6''
| bgcolor=#ffbbbb|''6''
| bgcolor=#ffbbbb|''6''
|-
| colspan=2 bgcolor="#c0c0ff" | worst pairwise opposition:
| bgcolor=#bbffbb|'''11'''
| bgcolor=#ffbbbb|''12''
| bgcolor=#ffbbbb|''12''
| bgcolor=#ffbbbb|''12''
|}
 
* [X] indicates voters who preferred the candidate listed in the column caption to the candidate listed in the row caption
* [Y] indicates voters who preferred the candidate listed in the row caption to the candidate listed in the column caption
 
'''Result''': The candidates B, C and D form a cycle with clear defeats. A benefits from that since it loses relatively closely against all three and therefore A's biggest defeat is the closest of all candidates. Thus, '''A''' is elected Minimax winner by the first group of voters.
 
==== Second group of voters ====
Now, the Minimax winner for the second group of voters is determined.
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 8          || A > B > D > C
|-
| 2          || A > D > C > B
|-
| 9          || C > B > D > A
|-
| 6          || D > C > B > A
|}
 
The results would be tabulated as follows:
{| class=wikitable border=1
|+ Pairwise election results
|-
| colspan=2 rowspan=2 |
| colspan=4 bgcolor="#c0c0ff" align=center | X
|-
| bgcolor="#c0c0ff" | A
| bgcolor="#c0c0ff" | B
| bgcolor="#c0c0ff" | C
| bgcolor="#c0c0ff" | D
|-
| bgcolor="#ffc0c0" rowspan=4 | Y
| bgcolor="#ffc0c0" | A
|
| bgcolor="#e0e0ff" | [X] 15 <br/>[Y] 10
| bgcolor="#e0e0ff" | [X] 15 <br/>[Y] 10
| bgcolor="#e0e0ff" | [X] 15 <br/>[Y] 10
|-
| bgcolor="#ffc0c0" | B
| bgcolor="#ffe0e0" | [X] 10 <br>[Y] 15
|
| bgcolor="#e0e0ff" | [X] 17 <br>[Y] 8
| bgcolor="#ffe0e0" | [X] 8 <br>[Y] 17
|-
| bgcolor="#ffc0c0" | C
| bgcolor="#ffe0e0" | [X] 10 <br>[Y] 15
| bgcolor="#ffe0e0" | [X] 8 <br>[Y] 17
|
| bgcolor="#e0e0ff" | [X] 16 <br>[Y] 9
|-
| bgcolor="#ffc0c0" | D
| bgcolor="#ffe0e0" | [X] 10 <br>[Y] 15
| bgcolor="#e0e0ff" | [X] 17 <br>[Y] 8
| bgcolor="#ffe0e0" | [X] 9 <br>[Y] 16
|
|-
| colspan=2 bgcolor="#c0c0ff" | Pairwise election results (won-tied-lost):
| 0-0-3
| 2-0-1
| 2-0-1
| 2-0-1
|-
| colspan=2 bgcolor="#c0c0ff" | worst pairwise defeat (winning votes):
| bgcolor=#bbffbb|'''15'''
| bgcolor=#ffbbbb|''17''
| bgcolor=#ffbbbb|''16''
| bgcolor=#ffbbbb|''17''
|-
| colspan=2 bgcolor="#c0c0ff" | worst pairwise defeat (margins):
| bgcolor=#bbffbb|'''5'''
| bgcolor=#ffbbbb|''9''
| bgcolor=#ffbbbb|''7''
| bgcolor=#ffbbbb|''9''
|-
| colspan=2 bgcolor="#c0c0ff" | worst pairwise opposition:
| bgcolor=#bbffbb|'''15'''
| bgcolor=#ffbbbb|''17''
| bgcolor=#ffbbbb|''16''
| bgcolor=#ffbbbb|''17''
|}
 
'''Result''': Taking only the votes of the second group in account, again, B, C and D form a cycle with clear defeats and A benefits from that because of its relatively close losses against all three and therefore A's biggest defeat is the closest of all candidates. Thus, '''A''' is elected Minimax winner by the second group of voters.
 
==== All voters ====
Finally, the Minimax winner of the complete set of voters is determined.
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 1          || A > B > C > D
|-
| 8          || A > B > D > C
|-
| 6          || A > D > B > C
|-
| 2          || A > D > C > B
|-
| 5          || B > C > D > A
|-
| 9          || C > B > D > A
|-
| 6          || C > D > B > A
|-
| 6          || D > C > B > A
|}
 
The results would be tabulated as follows:
{| class=wikitable border=1
|+ Pairwise election results
|-
| colspan=2 rowspan=2 |
| colspan=4 bgcolor="#c0c0ff" align=center | X
|-
| bgcolor="#c0c0ff" | A
| bgcolor="#c0c0ff" | B
| bgcolor="#c0c0ff" | C
| bgcolor="#c0c0ff" | D
|-
| bgcolor="#ffc0c0" rowspan=4 | Y
| bgcolor="#ffc0c0" | A
|
| bgcolor="#e0e0ff" | [X] 26 <br/>[Y] 17
| bgcolor="#e0e0ff" | [X] 26 <br/>[Y] 17
| bgcolor="#e0e0ff" | [X] 26 <br/>[Y] 17
|-
| bgcolor="#ffc0c0" | B
| bgcolor="#ffe0e0" | [X] 17 <br>[Y] 26
|
| bgcolor="#e0e0ff" | [X] 23 <br>[Y] 20
| bgcolor="#ffe0e0" | [X] 20 <br>[Y] 23
|-
| bgcolor="#ffc0c0" | C
| bgcolor="#ffe0e0" | [X] 17 <br>[Y] 26
| bgcolor="#ffe0e0" | [X] 20 <br>[Y] 23
|
| bgcolor="#e0e0ff" | [X] 22 <br>[Y] 21
|-
| bgcolor="#ffc0c0" | D
| bgcolor="#ffe0e0" | [X] 17 <br>[Y] 26
| bgcolor="#e0e0ff" | [X] 23 <br>[Y] 20
| bgcolor="#ffe0e0" | [X] 21 <br>[Y] 22
|
|-
| colspan=2 bgcolor="#c0c0ff" | Pairwise election results (won-tied-lost):
| 0-0-3
| 2-0-1
| 2-0-1
| 2-0-1
|-
| colspan=2 bgcolor="#c0c0ff" | worst pairwise defeat (winning votes):
| bgcolor=#ffbbbb|''26''
| bgcolor=#ffbbbb|''23''
| bgcolor=#bbffbb|'''22'''
| bgcolor=#ffbbbb|''23''
|-
| colspan=2 bgcolor="#c0c0ff" | worst pairwise defeat (margins):
| bgcolor=#ffbbbb|''9''
| bgcolor=#ffbbbb|''3''
| bgcolor=#bbffbb|'''1'''
| bgcolor=#ffbbbb|''3''
|-
| colspan=2 bgcolor="#c0c0ff" | worst pairwise opposition:
| bgcolor=#ffbbbb|''26''
| bgcolor=#ffbbbb|''23''
| bgcolor=#bbffbb|'''22'''
| bgcolor=#ffbbbb|''23''
|}
 
'''Result''': Again, B, C and D form a cycle. But now, their mutual defeats are very close. Therefore, the defeats A suffers from all three are relatively clear. With a small advantage over B and D, '''C''' is elected Minimax winner.
 
==== Conclusion ====
A is the Minimax winner within the first group of voters and also within the second group of voters. However, both groups combined elect C as the Minimax winner. Thus, Minimax fails the Consistency criterion.
 
=== Ranked pairs ===
{{Main|Ranked pairs}}
 
This example shows that the Ranked pairs method violates the Consistency criterion. Assume three candidates A, B and C with 39 voters with the following preferences:
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 7          || A > B > C
|-
| 6          || B > C > A
|-
| 3          || C > A > B
|-
| style="border-top: 3pt black solid"|9          || style="border-top: 3pt black solid"|A > C > B
|-
| 8          || B > A > C
|-
| 6          || C > B > A
|}
 
Now, the set of all voters is divided into two groups at the bold line. The voters over the line are the first group of voters; the others are the second group of voters.
 
==== First group of voters ====
In the following the Ranked pairs winner for the first group of voters is determined.
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 7          || A > B > C
|-
| 6          || B > C > A
|-
| 3          || C > A > B
|}
 
The results would be tabulated as follows:
{| class=wikitable border=1
|+ Pairwise election results
|-
| colspan=2 rowspan=2 |
| colspan=3 bgcolor="#c0c0ff" align=center | X
|-
| bgcolor="#c0c0ff" | A
| bgcolor="#c0c0ff" | B
| bgcolor="#c0c0ff" | C
|-
| bgcolor="#ffc0c0" rowspan=3 | Y
| bgcolor="#ffc0c0" | A
|
| bgcolor="#ffe0e0" | [X] 6 <br>[Y] 10
| bgcolor="#e0e0ff" | [X] 9 <br/>[Y] 7
|-
| bgcolor="#ffc0c0" | B
| bgcolor="#e0e0ff" | [X] 10 <br>[Y] 6
|
| bgcolor="#ffe0e0" | [X] 3 <br>[Y] 13
|-
| bgcolor="#ffc0c0" | C
| bgcolor="#ffe0e0" | [X] 7 <br>[Y] 9
| bgcolor="#e0e0ff" | [X] 13 <br>[Y] 3
|
|-
| colspan=2 bgcolor="#c0c0ff" | Pairwise election results (won-tied-lost):
| 1-0-1
| 1-0-1
| 1-0-1
|}
 
* [X] indicates voters who preferred the candidate listed in the column caption to the candidate listed in the row caption
* [Y] indicates voters who preferred the candidate listed in the row caption to the candidate listed in the column caption
 
The sorted list of victories would be:
{| class="wikitable"
! Pair !! Winner
|-
| B (13) vs. C (3)|| B 13
|-
| A (10) vs. B (6)|| A 10
|-
| A (7) vs. C (9)|| C 9
|}
 
'''Result''': B > C and A > B are locked in first (and C > A can't be locked in after that), so the full ranking is A > B > C. Thus, '''A''' is elected Ranked pairs winner by the first group of voters.
 
==== Second group of voters ====
Now, the Ranked pairs winner for the second group of voters is determined.
{| class="wikitable"
! # of voters !! Preferences
|-
| 9          || A > C > B
|-
| 8          || B > A > C
|-
| 6          || C > B > A
|}
 
The results would be tabulated as follows:
{| class=wikitable border=1
|+ Pairwise election results
|-
| colspan=2 rowspan=2 |
| colspan=3 bgcolor="#c0c0ff" align=center | X
|-
| bgcolor="#c0c0ff" | A
| bgcolor="#c0c0ff" | B
| bgcolor="#c0c0ff" | C
|-
| bgcolor="#ffc0c0" rowspan=3 | Y
| bgcolor="#ffc0c0" | A
|
| bgcolor="#e0e0ff" | [X] 14 <br>[Y] 9
| bgcolor="#ffe0e0" | [X] 6 <br>[Y] 17
|-
| bgcolor="#ffc0c0" | B
| bgcolor="#ffe0e0" | [X] 9 <br>[Y] 14
|
| bgcolor="#e0e0ff" | [X] 15 <br>[Y] 8
|-
| bgcolor="#ffc0c0" | C
| bgcolor="#e0e0ff" | [X] 17 <br>[Y] 6
| bgcolor="#ffe0e0" | [X] 8 <br>[Y] 15
|
|-
| colspan=2 bgcolor="#c0c0ff" | Pairwise election results (won-tied-lost):
| 1-0-1
| 1-0-1
| 1-0-1
|}
 
The sorted list of victories would be:
{| class="wikitable"
! Pair !! Winner
|-
| A (17) vs. C (6)|| A 17
|-
| B (8) vs. C (15)|| C 15
|-
| A (9) vs. B (14)|| B 14
|}
 
'''Result''': Taking only the votes of the second group in account, A > C and C > B are locked in first (and B > A can't be locked in after that), so the full ranking is A > C > B. Thus, '''A''' is elected Ranked pairs winner by the second group of voters.
 
==== All voters ====
Finally, the Ranked pairs winner of the complete set of voters is determined.
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 7          || A > B > C
|-
| 9          || A > C > B
|-
| 8          || B > A > C
|-
| 6          || B > C > A
|-
| 3          || C > A > B
|-
| 6          || C > B > A
|}
 
The results would be tabulated as follows:
{| class=wikitable border=1
|+ Pairwise election results
|-
| colspan=2 rowspan=2 |
| colspan=3 bgcolor="#c0c0ff" align=center | X
|-
| bgcolor="#c0c0ff" | A
| bgcolor="#c0c0ff" | B
| bgcolor="#c0c0ff" | C
|-
| bgcolor="#ffc0c0" rowspan=3 | Y
| bgcolor="#ffc0c0" | A
|
| bgcolor="#e0e0ff" | [X] 20 <br>[Y] 19
| bgcolor="#ffe0e0" | [X] 15 <br>[Y] 24
|-
| bgcolor="#ffc0c0" | B
| bgcolor="#ffe0e0" | [X] 19 <br>[Y] 20
|
| bgcolor="#ffe0e0" | [X] 18 <br>[Y] 21
|-
| bgcolor="#ffc0c0" | C
| bgcolor="#e0e0ff" | [X] 24 <br>[Y] 15
| bgcolor="#e0e0ff" | [X] 21 <br>[Y] 18
|
|-
| colspan=2 bgcolor="#c0c0ff" | Pairwise election results (won-tied-lost):
| 1-0-1
| 2-0-0
| 0-0-2
|}
 
The sorted list of victories would be:
{| class="wikitable"
! Pair !! Winner
|-
| A (25) vs. C (15)|| A 24
|-
| B (21) vs. C (18)|| B 21
|-
| A (19) vs. B (20)|| B 20
|}
 
'''Result''': Now, all three pairs (A > C, B > C and B > A) can be locked in without cycle. The full ranking is B > A > C. Thus, Ranked pairs chooses '''B''' as winner. In fact, B is also Condorcet winner.
 
==== Conclusion ====
A is the Ranked pairs winner within the first group of voters and also within the second group of voters. However, both groups combined elect B as the Ranked pairs winner. Thus, the Ranked pairs method fails the Consistency criterion.
 
=== Schulze method ===
{{Main|Schulze method}}
 
This example shows that the Schulze method violates the Consistency criterion. Again, assume three candidates A, B and C with 39 voters with the following preferences:
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 7          || A > B > C
|-
| 6          || B > C > A
|-
| 3          || C > A > B
|-
| style="border-top: 3pt black solid"|9          || style="border-top: 3pt black solid"|A > C > B
|-
| 8          || B > A > C
|-
| 6          || C > B > A
|}
 
Now, the set of all voters is divided into two groups at the bold line. The voters over the line are the first group of voters; the others are the second group of voters.
 
==== First group of voters ====
In the following the Schulze winner for the first group of voters is determined.
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 7          || A > B > C
|-
| 6          || B > C > A
|-
| 3          || C > A > B
|}
 
The pairwise preferences would be tabulated as follows:
{| class="wikitable" style="text-align:center"
|+ Matrix of pairwise preferences
|-
! !! d[*,A] !! d[*,B] !! d[*,C]
|-
! d[A,*]
| || bgcolor=#ddffdd|10 || bgcolor=#ffdddd|7
|-
! d[B,*]
| bgcolor=#ffdddd|6 || || bgcolor=#ddffdd|13
|-
! d[C,*]
| bgcolor=#ddffdd|9 || bgcolor=#ffdddd|3
|}
 
Now, the strongest paths have to be identified, e.g. the path A > B > C is stronger than the direct path A > C (which is nullified, since it is a loss for A).
{| class="wikitable" style="text-align:center"
|+ Strengths of the strongest paths
|-
! !! d[*,A] !! d[*,B] !! d[*,C]
|-
! d[A,*]
| || bgcolor=#ddffdd|10 || bgcolor=#ddffdd|10
|-
! d[B,*]
| bgcolor=#ffdddd|9 || || bgcolor=#ddffdd|13
|-
! d[C,*]
| bgcolor=#ffdddd|9 || bgcolor=#ffdddd|9
|}
 
'''Result''': A > B, A > C and B > C prevail, so the full ranking is A > B > C. Thus, '''A''' is elected Schulze winner by the first group of voters.
 
==== Second group of voters ====
Now, the Schulze winner for the second group of voters is determined.
{| class="wikitable"
! # of voters !! Preferences
|-
| 9          || A > C > B
|-
| 8          || B > A > C
|-
| 6          || C > B > A
|}
 
The pairwise preferences would be tabulated as follows:
{| class="wikitable" style="text-align:center"
|+ Matrix of pairwise preferences
|-
! !! d[*,A] !! d[*,B] !! d[*,C]
|-
! d[A,*]
| || bgcolor=#ffdddd|9 || bgcolor=#ddffdd|17
|-
! d[B,*]
| bgcolor=#ddffdd|14 || || bgcolor=#ffdddd|8
|-
! d[C,*]
| bgcolor=#ffdddd|6 || bgcolor=#ddffdd|15
|}
 
Now, the strongest paths have to be identified, e.g. the path A > C > B is stronger than the direct path A > B.
{| class="wikitable" style="text-align:center"
|+ Strengths of the strongest paths
|-
! !! d[*,A] !! d[*,B] !! d[*,C]
|-
! d[A,*]
| || bgcolor=#ddffdd|15 || bgcolor=#ddffdd|17
|-
! d[B,*]
| bgcolor=#ffdddd|14 || || bgcolor=#ffdddd|14
|-
! d[C,*]
| bgcolor=#ffdddd|14 || bgcolor=#ddffdd|15
|}
 
'''Result''': A > B, A > C and C > B prevail, so the full ranking is A > C > B. Thus, '''A''' is elected Schulze winner by the second group of voters.
 
==== All voters ====
Finally, the Schulze winner of the complete set of voters is determined.
{| class="wikitable"
|-
! # of voters !! Preferences
|-
| 7          || A > B > C
|-
| 9          || A > C > B
|-
| 8          || B > A > C
|-
| 6          || B > C > A
|-
| 3          || C > A > B
|-
| 6          || C > B > A
|}
 
The pairwise preferences would be tabulated as follows:
{| class="wikitable" style="text-align:center"
|+ Matrix of pairwise preferences
|-
! !! d[*,A] !! d[*,B] !! d[*,C]
|-
! d[A,*]
| || bgcolor=#ffdddd|19 || bgcolor=#ddffdd|24
|-
! d[B,*]
| bgcolor=#ddffdd|20 || || bgcolor=#ddffdd|21
|-
! d[C,*]
| bgcolor=#ffdddd|15 || bgcolor=#ffdddd|18
|}
 
Now, the strongest paths have to be identified:
{| class="wikitable" style="text-align:center"
|+ Strengths of the strongest paths
|-
! !! d[*,A] !! d[*,B] !! d[*,C]
|-
! d[A,*]
| || bgcolor=#ffdddd|0 || bgcolor=#ddffdd|24
|-
! d[B,*]
| bgcolor=#ddffdd|20 || || bgcolor=#ddffdd|21
|-
! d[C,*]
| bgcolor=#ffdddd|0 || bgcolor=#ffdddd|0
|}
 
'''Result''': A > C, B > A and B > C prevail, so the full ranking is B > A > C.  Thus, Schulze chooses '''B''' as winner. In fact, B is also Condorcet winner.
 
==== Conclusion ====
A is the Schulze winner within the first group of voters and also within the second group of voters. However, both groups combined elect B as the Schulze winner. Thus, the Schulze method fails the Consistency criterion.
 
==References==
#{{note|Smith}}[[John H Smith (mathematician)|John H Smith]], "Aggregation of preferences with variable electorate", ''Econometrica'', Vol. 41 (1973), pp.&nbsp;1027&ndash;1041.
#{{note|Woodall}}[[Douglas R. Woodall|D. R. Woodall]], "[http://www.votingmatters.org.uk/ISSUE3/P5.HTM Properties of preferential election rules]", ''Voting matters'', Issue 3 (December 1994), pp.&nbsp;8&ndash;15.
#{{note|Young}}[[Peyton Young|H. P. Young]], "Social Choice Scoring Functions", ''SIAM Journal on Applied Mathematics'' Vol. 28, No. 4 (1975), pp.&nbsp;824&ndash;838.
 
[[Category:Voting system criteria]]

Latest revision as of 01:44, 30 October 2014

55 year-old Paediatrician Bykowski from Provost, has many passions including legos, property developers in singapore and dolls. Wants to travel and was enthused after making buying a property in singapore (pop over to this site) journey to Bikini Atoll Nuclear Test Site.