Holding period return: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Addbot
m Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q12662272
en>Jonazo
 
Line 1: Line 1:
{{distinguish|Ramanujan summation}}
Alyson Meagher is the title her parents gave her but she doesn't like when people use her complete title. To play lacross is something he would never give up. Since he was eighteen he's been operating as an information officer but he ideas on changing it. For many years she's been residing in Kentucky but her husband wants them to move.<br><br>Feel free to visit my web blog: [http://165.132.39.93/xe/visitors/372912 best psychic readings]
 
In [[number theory]], a branch of [[mathematics]], '''Ramanujan's sum''', usually denoted ''c''<sub>''q''</sub>(''n''), is a function of two positive integer variables ''q'' and ''n'' defined by the formula
 
:<math>c_q(n)=
\sum_{a=1\atop (a,q)=1}^q
e^{2 \pi i \tfrac{a}{q} n}
,
</math>
 
where (''a'', ''q'') = 1 means that ''a'' only takes on values [[coprime]] to  ''q''.
 
[[Srinivasa Ramanujan]] introduced the sums in a 1918 paper.<ref>Ramanujan, ''On Certain Trigonometric Sums ...'' <blockquote>These sums are obviously of great interest, and a few of their properties have been discussed already. But, so far as I know, they have never been considered from the point of view which I adopt in  this paper; and I believe that all the results which it contains are new.</blockquote>(''Papers'', p. 179). In a footnote cites pp. 360&ndash;370 of the Dirichlet-Dedekind ''Vorlesungen über Zahlentheorie'', 4th ed.</ref> In addition to the expansions discussed in this article, Ramanujan's sums are used in the proof of [[Vinogradov's theorem]] that every sufficiently-large odd number is the sum of three [[Prime number|primes]].<ref>Nathanson, ch. 8</ref>
 
==Notation==
 
For integers ''a'' and ''b'', &nbsp; <math>a\mid b</math> is read "''a'' divides ''b''" and means that there is an integer ''c'' such that ''b'' = ''ac''. Similarly, <math>a\nmid b</math> is read "''a'' does not divide ''b''".
The summation symbol <math>\sum_{d\,\mid\,m}f(d)</math> means that ''d'' goes through all the positive divisors of ''m'', e.g.
:<math>\sum_{d\,\mid\,12}f(d) =
f(1) + f(2) + f(3) + f(4) + f(6) + f(12).
</math>
 
<math>(a,\,b)\;</math> is the [[greatest common divisor]],
 
<math>\phi(n)\;</math> is [[Euler's totient function]],
 
<math>\mu(n)\;</math> is the [[Möbius function]], and
 
<math>\zeta(s)\;</math> is the [[Riemann zeta function]].
 
==Formulas for ''c''<sub>''q''</sub>(''n'')==
 
===Trigonometry===
 
These formulas come from the definition, [[Euler's formula]] <math>e^{ix}= \cos x + i \sin x,</math> and elementary trigonometric identities.
 
:<math>
\begin{align}
c_1(n)& =
1\\
c_2(n) &=
\cos n\pi\\
 
c_3(n)&=
2\cos \tfrac23 n\pi\\
 
c_4(n)&=
2\cos \tfrac12 n\pi\\
 
c_5(n)&=
2\cos \tfrac25 n\pi +
2\cos \tfrac45 n\pi\\
 
c_6(n)&=
2\cos \tfrac13 n\pi \\
 
c_7(n)&=
2\cos \tfrac27 n\pi +
2\cos \tfrac47 n\pi +
2\cos \tfrac67 n\pi \\
 
c_8(n)&=
2\cos \tfrac14 n\pi +
2\cos \tfrac34 n\pi \\
 
c_9(n)&=
2\cos \tfrac29 n\pi +
2\cos \tfrac49 n\pi +
2\cos \tfrac89 n\pi \\
 
c_{10}(n)&=
2\cos \tfrac15 n\pi +
2\cos \tfrac35 n\pi \\
\end{align}
</math>
 
and so on ({{OEIS2C|A000012}}, {{OEIS2C|A033999}}, {{OEIS2C|A099837}}, {{OEIS2C|A176742}},.., {{OEIS2C|A100051}},...) They show that ''c''<sub>''q''</sub>(''n'') is always real.
 
===Kluyver===
 
Let <math>\zeta_q=e^{\frac{2\pi i}{q}}.</math>
 
Then ζ<sub>''q''</sub> is a root of the equation ''x''<sup>''q''</sup> &ndash; 1 = 0. Each of its powers ζ<sub>''q''</sub>, ζ<sub>''q''</sub><sup>2</sup>, ... ζ<sub>''q''</sub><sup>''q''</sup> = ζ<sub>''q''</sub><sup>0</sup> = 1 is also a root. Therefore, since there are ''q'' of them, they are all of the roots. The numbers ζ<sub>''q''</sub><sup>''n''</sup> where 1 ≤ ''n'' ≤ ''q'' are called the ''q''<sup>th</sup> [[roots of unity]]. ζ<sub>''q''</sub> is called a '''primitive''' ''q'' <sup>th</sup> root of unity because the smallest value of ''n'' that makes ζ<sub>''q''</sub><sup>''n''</sup> = 1 is ''q''. The other primitive ''q''<sup>th</sup> roots of are the numbers ζ<sub>''q''</sub><sup>''a''</sup> where (''a'', ''q'') = 1. Therefore, there are φ(''q'') primitive ''q'' <sup>th</sup> roots of unity.
 
Thus, the Ramanujan sum ''c''<sub>''q''</sub>(''n'') is the sum of the ''n'' <sup>th</sup> powers of the primitive ''q'' <sup>th</sup> roots of unity.
 
It is a fact<ref>Hardy & Wright, Thms 65, 66</ref> that the powers of ζ<sub>''q''</sub> are precisely the primitive roots for all the divisors of ''q''.
 
<blockquote>For example, let ''q'' = 12. Then
 
:&zeta;<sub>12</sub>, &zeta;<sub>12</sub><sup>5</sup>, &zeta;<sub>12</sub><sup>7</sup>, and &zeta;<sub>12</sub><sup>11</sup>  are the primitive twelfth roots of unity,
 
:&zeta;<sub>12</sub><sup>2</sup> and &zeta;<sub>12</sub><sup>10</sup> are the primitive sixth roots of unity,
 
:&zeta;<sub>12</sub><sup>3</sup> = ''i'' and &zeta;<sub>12</sub><sup>9</sup>  = &minus;''i'' are the primitive fourth roots of unity,
 
:&zeta;<sub>12</sub><sup>4</sup> and &zeta;<sub>12</sub><sup>8</sup> are the primitive third roots of unity,
 
:&zeta;<sub>12</sub><sup>6</sup> = &minus;1 is the primitive second root of unity, and
 
:&zeta;<sub>12</sub><sup>12</sup> = 1 is the primitive first root of unity.
</blockquote>
 
Therefore, if
:<math>\eta_q(n) = \sum_{k=1}^q \zeta_q^{kn}</math>
 
is the sum of the ''n'' <sup>th</sup> powers of all the roots, primitive and imprimitive,
 
:<math>\eta_q(n) = \sum_{d\,\mid\, q} c_d(n),</math>
 
and by [[Möbius inversion]],
 
:<math>c_q(n) = \sum_{d\,\mid\,q} \mu\left(\frac{q}d\right)\eta_d(n).</math>
 
It follows from the identity ''x''<sup>''q''</sup> &ndash; 1 = (''x'' &ndash; 1)(''x''<sup>''q''&ndash;1</sup> + ''x''<sup>''q''&ndash;2</sup> + ... + ''x'' + 1) that
 
:<math>
\eta_q(n) =
\begin{cases}
0&\;\mbox{  if }q\nmid n\\
q&\;\mbox{  if }q\mid n\\
\end{cases}
</math>
 
and this leads to the formula
 
:<math>
c_q(n)=
\sum_{d\,\mid\,(q,n)}\mu\left(\frac{q}{d}\right) d
,
</math> &nbsp;&nbsp;&nbsp; published by Kluyver in 1906.<ref>G. H. Hardy, P. V. Seshu Aiyar, & B. M. Wilson, notes to ''On certain trigonometrical sums ...'', Ramanujan, ''Papers'', p. 343</ref>
 
This shows that ''c''<sub>''q''</sub>(''n'') is always an integer. Compare it with the formula
:<math>
\phi(q)=
\sum_{d\,\mid\,q}\mu\left(\frac{q}{d}\right) d
.</math>
 
===von Sterneck===
 
It is easily shown from the definition that ''c''<sub>''q''</sub>(''n'') is [[multiplicative function|multiplicative]] when considered as a function of ''q'' for a fixed value of ''n'': i.e.
 
:<math>\mbox{If } \;(q,r) = 1 \;\mbox{ then }\; c_q(n)c_r(n)=c_{qr}(n).</math>
 
From the definition (or Kluyver's formula) it is straightforward to prove that, if ''p'' is a prime number,
 
:<math>
c_p(n) =
\begin{cases}
-1    &\mbox{  if }p\nmid n\\
\phi(p)&\mbox{  if }p\mid n\\
\end{cases}
,</math>
 
and if ''p''<sup>''k''</sup> is a prime power where ''k'' > 1,
 
:<math>
c_{p^k}(n) =
\begin{cases}
0        &\mbox{  if }p^{k-1}\nmid n\\
-p^{k-1}  &\mbox{  if }p^{k-1}\mid n \mbox{ and }p^k\nmid n\\
\phi(p^k) &\mbox{  if }p^k\mid n\\
\end{cases}
.</math>
 
This result and the multiplicative property can be used to prove
:<math>c_q(n)=
\mu\left(\frac{q}{(q, n)}\right)
\frac{\phi(q)}{\phi\left(\frac{q}{(q, n)}\right)}
.
</math>&nbsp;&nbsp;&nbsp; This is called von Sterneck's arithmetic function.<ref>B. Berndt, commentary to ''On certain trigonometrical sums...'', Ramanujan, ''Papers'', p. 371</ref>
The equivalence of it and Ramanujan's sum is due to Hölder.<ref>Knopfmacher, p. 196</ref><ref>Hardy & Wright, p. 243</ref>
 
===Other properties of ''c''<sub>''q''</sub>(''n'')===
 
For all positive integers ''q'',
 
:<math>
c_1(q) = 1, \;\;
c_q(1) = \mu(q), \;
\mbox{  and  }\; c_q(q) =
\phi(q)
.
</math>
 
:<math>
\mbox{If }
m \equiv n \pmod q
\mbox{ then }
c_q(m) =
c_q(n)
.
</math>
 
For a fixed value of ''q'' the absolute value of the sequence
:''c''<sub>''q''</sub>(1), ''c''<sub>''q''</sub>(2), ... is bounded by φ(''q''), and
 
for a fixed value of ''n'' the absolute value of the sequence
:''c''<sub>1</sub>(''n''), ''c''<sub>2</sub>(''n''), ... is bounded by σ(''n''), the sum of the divisors of ''n''.
 
If ''q'' > 1
 
:<math>\sum_{n=a}^{a+q-1} c_q(n)=0.
</math>
 
Let ''m''<sub>1</sub>, ''m''<sub>2</sub> > 0, ''m'' = lcm(''m''<sub>1</sub>, ''m''<sub>2</sub>). Then<ref>Tóth, external links, eq. 6</ref> Ramanujan's sums satisfy an [[orthogonality|orthogonality property]]:
:<math>
\frac{1}{m}\sum_{k=1}^m c_{m_1}(k) c_{m_2}(k) =
\begin{cases}
\phi(m), & \text{if }\;m_1=m_2=m,\\
0,      & \text{otherwise.}
\end{cases}
</math>
 
Let ''n'', ''k'' > 0. Then<ref>Tóth, external links, eq. 17.</ref>
:<math>
\sum_\stackrel{d\mid n}{\gcd(d,k)=1} d\;\frac{\mu(\tfrac{n}{d})}{\phi(d)} =
\frac{\mu(n) c_n(k)}{\phi(n)},
</math>
known as the [[Richard Brauer|Brauer]] - [[Hans rademacher|Rademacher]] identity.
 
If ''n'' > 0 and ''a'' is any integer, we also have<ref>Tóth, external links, eq. 8.</ref>
:<math>
\sum_\stackrel{1\le k\le n}{\gcd(k,n)=1} c_n(k-a) =
\mu(n)c_n(a),
</math>
due to Cohen.
 
==Table==
 
{|
|}
 
==Ramanujan expansions==
 
If ''f''(''n'') is an [[arithmetic function]] (i.e. a complex-valued function of the integers or natural numbers), then a  [[series (mathematics)|convergent infinite series]] of the form
 
:<math>f(n)=\sum_{q=1}^\infty a_q c_q(n)</math> &nbsp; or of the form
 
:<math>f(q)=\sum_{n=1}^\infty a_n c_q(n)</math> &nbsp; (where the ''a''<sub>''k''</sub> are complex numbers),
 
is called a '''Ramanujan expansion'''<ref>B. Berndt, commentary to ''On certain trigonometrical sums...'', Ramanujan, ''Papers'',  pp. 369&ndash;371</ref> of ''f''(''n''). .
 
Ramanujan found expansions of some of the well-known functions of number theory. All of these results are proved in an "elementary" manner (i.e. only using formal manipulations of series and the simplest results about convergence).<ref>Ramanujan, ''On certain trigonometrical sums...'' <blockquote>The majority of my formulae are "elementary" in the technical sense of the word &mdash; they can (that is to say) be proved by a combination of processes involving only finite algebra and simple general theorems concerning infinite series</blockquote>(''Papers'', p. 179)</ref><ref>The theory of formal Dirichlet series is discussed in  Hardy & Wright, § 17.6 and in Knopfmacher.</ref><ref>Knopfmacher, ch. 7, discusses Ramanujan expansions as a type of Fourier expansion in an inner product space which has the ''c''<sub>''q''</sub> as an orthogonal basis.</ref>
 
The expansion of the '''zero function''' depends on a result from the analytic theory of prime numbers, namely that the series <math>\sum_{n=1}^\infty\frac{\mu(n)}{n}</math> converges to 0, and the results for ''r''(''n'') and ''r''&prime;(''n'') depend on theorems in an earlier paper.<ref>Ramanujan, ''On Certain Arithmetical Functions''</ref>
 
All the formulas in this section are from Ramanujan's 1918 paper.
===Generating functions===
 
The [[generating function]]s of the Ramanujan sums are [[Dirichlet series]]:
 
:<math>
\zeta(s)
\sum_{\delta\,\mid\,q}
\mu\left(\frac{q}{\delta}\right)
\delta^{1-s} =
\sum_{n=1}^\infty
\frac{c_q(n)}{n^s}
</math>
 
is a generating function for the sequence ''c''<sub>''q''</sub>(1), ''c''<sub>''q''</sub>(2), ... where ''q'' is kept constant, and
 
:<math>
\frac{\sigma_{r-1}(n)}{n^{r-1}\zeta(r)}=
\sum_{q=1}^\infty
\frac{c_q(n)}{q^{r}}
</math>
 
is a generating function for the sequence ''c''<sub>1</sub>(''n''), ''c''<sub>2</sub>(''n''), ... where ''n'' is kept constant.
 
There is also the double Dirichlet series
 
:<math>
\frac{\zeta(s) \zeta(r+s-1)}{\zeta(r)}=
\sum_{q=1}^\infty \sum_{n=1}^\infty
\frac{c_q(n)}{q^r n^s}
.
</math>
 
===&sigma;<sub>''k''</sub>(''n'')===
 
σ<sub>''k''</sub>(''n'') is the [[divisor function]] (i.e. the sum of the ''k''<sup>th</sup> powers of the divisors of ''n'', including 1 and ''n''). σ<sub>0</sub>(n), the number of  divisors of ''n'', is usually written ''d''(''n'') and σ<sub>1</sub>(n), the sum of the divisors of ''n'', is usually written σ(''n'').
 
If ''s'' > 0,
 
:<math>
\sigma_s(n)=
n^s
\zeta(s+1)
\left(
\frac{c_1(n)}{1^{s+1}}+
\frac{c_2(n)}{2^{s+1}}+
\frac{c_3(n)}{3^{s+1}}+
\dots
\right)
</math>
 
and
 
:<math>
\sigma_{-s}(n)=
\zeta(s+1)
\left(
\frac{c_1(n)}{1^{s+1}}+
\frac{c_2(n)}{2^{s+1}}+
\frac{c_3(n)}{3^{s+1}}+
\dots
\right).
</math>
 
Setting ''s'' = 1 gives
 
:<math>
\sigma(n)=
\frac{\pi^2}{6}n
\left(
\frac{c_1(n)}{1}+
\frac{c_2(n)}{4}+
\frac{c_3(n)}{9}+
\dots
\right) .
</math>
 
If the [[Riemann hypothesis]] is true, and <math>-\tfrac12<s<\tfrac12,</math>
 
:<math>
\begin{align}
\sigma_s(n)
&=
\zeta(1-s)
\left(
\frac{c_1(n)}{1^{1-s}}+
\frac{c_2(n)}{2^{1-s}}+
\frac{c_3(n)}{3^{1-s}}+
\dots
\right)\\
 
&=
n^s
\zeta(1+s)
\left(
\frac{c_1(n)}{1^{1+s}}+
\frac{c_2(n)}{2^{1+s}}+
\frac{c_3(n)}{3^{1+s}}+
\dots
\right).\\
\end{align}
</math>
 
===''d''(''n'')===
 
''d''(''n'') = σ<sub>0</sub>(''n'') is the number of divisors of ''n'', including 1 and ''n'' itself.
 
:<math>
-d(n)=
\frac{\log 1}{1}c_1(n)+
\frac{\log 2}{2}c_2(n)+
\frac{\log 3}{3}c_3(n)+
\dots
</math>
 
and
 
:<math>
-d(n)(2\gamma+\log n)=
\frac{\log^2 1}{1}c_1(n)+
\frac{\log^2 2}{2}c_2(n)+
\frac{\log^2 3}{3}c_3(n)+
\dots
</math>
 
where γ = 0.5772... is the [[Euler–Mascheroni constant]].
 
===&phi;(''n'')===
 
[[Euler's totient function]] φ(''n'') is the number of positive integers less than ''n'' and coprime to ''n''.
 
Ramanujan defines a generalization of it: if &nbsp; <math>n=p_1^{a_1}p_2^{a_2}p_3^{a_3}\dots</math>&nbsp; is the prime factorization of ''n'', and ''s'' is a complex number, let
:<math>\phi_s(n)=n^s(1-p_1^{-s})(1-p_2^{-s})(1-p_3^{-s})\dots,
</math> so that &phi;<sub>1</sub>(''n'') = &phi;(''n'') is Euler's function.<ref>This is [[Jordan's totient function]], J<sub>''s''</sub>(''n'').</ref>
 
He proves that
 
:<math>
\frac{\mu(n)n^s}{\phi_s(n)\zeta(s)}=
\sum_{\nu=1}^\infty \frac{\mu(n\nu)}{\nu^s}
</math>
 
and uses this to show that
 
:<math>\frac{\phi_s(n)\zeta(s+1)}{n^s}=\frac{\mu(1)c_1(n)}{\phi_{s+1}(1)}+\frac{\mu(2)c_2(n)}{\phi_{s+1}(2)}+\frac{\mu(3)c_3(n)}{\phi_{s+1}(3)}+\dots.
</math>
 
Letting ''s'' = 1,
 
:<math>
 
\begin{align}
 
\phi(n) =
 
\frac{6}{\pi^2}n
 
\Big(
c_1(n)
 
&-\frac{c_2(n)}{2^2-1}
-\frac{c_3(n)}{3^2-1}
-\frac{c_5(n)}{5^2-1}  \\
 
&+\frac{c_6(n)}{(2^2-1)(3^2-1)}
-\frac{c_7(n)}{7^2-1}
+\frac{c_{10}(n)}{(2^2-1)(5^2-1)}
-\dots
\Big).\\
\end{align}
</math>
 
Note that the constant is the inverse<ref>Cf. Hardy & Wright, Thm. 329, which states that &nbsp;
<math>\;\frac{6}{\pi^2}<\frac{\sigma(n)\phi(n)}{n^2}<1.</math></ref>  of the one in the formula for σ(''n'').
 
===&Lambda;(''n'')===
 
[[von Mangoldt function|Von Mangoldt's function]] Λ(n) is zero unless ''n'' = ''p''<sup>''k''</sup> is a power of a prime number, in which case it is the natural logarithm log ''p''.
 
:<math>
-\Lambda(m) =
c_m(1)+
\frac12c_m(2)+
\frac13c_m(3)+
\dots
</math>
 
===Zero===
For all ''n'' > 0,
 
:<math>0=
c_1(n)+
\frac12c_2(n)+
\frac13c_3(n)+
\dots.
</math>
 
This is equivalent to the [[prime number theorem]].<ref>Hardy, ''Ramanujan'', p. 141</ref><ref>B. Berndt, commentary to ''On certain trigonometrical sums...'', Ramanujan, ''Papers'', p. 371</ref>
 
===''r''<sub>2''s''</sub>(''n'') (sums of squares)===
''r''<sub>2''s''</sub>(''n'') is the number of way of representing ''n'' as the sum of  2''s'' [[Square number|squares]], counting different orders and signs as different (e.g., ''r''<sub>2</sub>(13) = 8, as 13 = (±2)<sup>2</sup> + (±3)<sup>2</sup> = (±3)<sup>2</sup> + (±2)<sup>2</sup>.)
 
Ramanujan defines a function δ<sub>2''s''</sub>(''n'') and references a paper<ref>Ramanujan, ''On Certain Arithmetical Functions''</ref> in which he proved that ''r''<sub>2''s''</sub>(''n'') = δ<sub>2''s''</sub>(''n'') for ''s'' = 1, 2, 3, and 4. For ''s'' > 4 he shows that δ<sub>2''s''</sub>(''n'') is a good approximation to ''r''<sub>2''s''</sub>(''n'').
 
''s'' = 1 has a special formula:
 
:<math>
\delta_2(n)=
\pi
\left(
\frac{c_1(n)}{1}-
\frac{c_3(n)}{3}+
\frac{c_5(n)}{5}-
\dots
\right).
</math>
 
In the following formulas the signs repeat with a period of 4.
 
If ''s'' ≡ 0 (mod 4),
:<math>
\delta_{2s}(n)=
\frac{\pi^s n^{s-1}}{(s-1)!}
\left(
\frac{c_1(n)}{1^s}+
\frac{c_4(n)}{2^s}+
\frac{c_3(n)}{3^s}+
\frac{c_8(n)}{4^s}+
\frac{c_5(n)}{5^s}+
\frac{c_{12}(n)}{6^s}+
\frac{c_7(n)}{7^s}+
\frac{c_{16}(n)}{8^s}+
\dots
\right)
</math>
 
If ''s'' ≡ 2 (mod 4),
:<math>
\delta_{2s}(n)=
\frac{\pi^s n^{s-1}}{(s-1)!}
\left(
\frac{c_1(n)}{1^s}-
\frac{c_4(n)}{2^s}+
\frac{c_3(n)}{3^s}-
\frac{c_8(n)}{4^s}+
\frac{c_5(n)}{5^s}-
\frac{c_{12}(n)}{6^s}+
\frac{c_7(n)}{7^s}-
\frac{c_{16}(n)}{8^s}+
\dots
\right)
</math>
 
If ''s'' ≡ 1 (mod 4) and ''s'' > 1,
:<math>
\delta_{2s}(n)=
\frac{\pi^s n^{s-1}}{(s-1)!}
\left(
\frac{c_1(n)}{1^s}+
\frac{c_4(n)}{2^s}-
\frac{c_3(n)}{3^s}+
\frac{c_8(n)}{4^s}+
\frac{c_5(n)}{5^s}+
\frac{c_{12}(n)}{6^s}-
\frac{c_7(n)}{7^s}+
\frac{c_{16}(n)}{8^s}+
\dots
\right)
</math>
 
If ''s'' ≡ 3 (mod 4),
:<math>
\delta_{2s}(n)=
\frac{\pi^s n^{s-1}}{(s-1)!}
\left(
\frac{c_1(n)}{1^s}-
\frac{c_4(n)}{2^s}-
\frac{c_3(n)}{3^s}-
\frac{c_8(n)}{4^s}+
\frac{c_5(n)}{5^s}-
\frac{c_{12}(n)}{6^s}-
\frac{c_7(n)}{7^s}-
\frac{c_{16}(n)}{8^s}+
\dots
\right)
</math>
 
and therefore,
 
:<math>
r_2(n)=
\pi
\left(
\frac{c_1(n)}{1}-
\frac{c_3(n)}{3}+
\frac{c_5(n)}{5}-
\frac{c_7(n)}{7}+
\frac{c_{11}(n)}{11}-
\frac{c_{13}(n)}{13}+
\frac{c_{15}(n)}{15}-
\frac{c_{17}(n)}{17}+
\dots
\right)
</math>
 
:<math>
r_4 (n)=
\pi^2 n
\left(
\frac{c_1(n)}{1}-
\frac{c_4(n)}{4}+
\frac{c_3(n)}{9}-
\frac{c_8(n)}{16}+
\frac{c_5(n)}{25}-
\frac{c_{12}(n)}{36}+
\frac{c_7(n)}{49}-
\frac{c_{16}(n)}{64}+
\dots
\right)
</math>
 
:<math>
r_6(n)=
\frac{\pi^3 n^2}{2}
\left(
\frac{c_1(n)}{1}-
\frac{c_4(n)}{8}-
\frac{c_3(n)}{27}-
\frac{c_8(n)}{64}+
\frac{c_5(n)}{125}-
\frac{c_{12}(n)}{216}-
\frac{c_7(n)}{343}-
\frac{c_{16}(n)}{512}+
\dots
\right)
</math>
 
:<math>
r_8(n)=
\frac{\pi^4 n^3}{6}
\left(
\frac{c_1(n)}{1}+
\frac{c_4(n)}{16}+
\frac{c_3(n)}{81}+
\frac{c_8(n)}{256}+
\frac{c_5(n)}{625}+
\frac{c_{12}(n)}{1296}+
\frac{c_7(n)}{2401}+
\frac{c_{16}(n)}{4096}+
\dots
\right)
</math>
 
===''r''&prime;<sub>2''s''</sub>(''n'') (sums of triangles)===
''r''&prime;<sub>2''s''</sub>(''n'')  is the number of ways ''n'' can be represented as the sum of 2''s'' [[triangular number]]s (i.e. the numbers 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4, 15, ...; the ''n''<sup>th</sup> triangular number is given by the formula ''n''(''n'' + 1)/2.)
 
The analysis  here is similar to that for squares. Ramanujan refers to the same paper as he did for the squares, where he showed that there is a function δ&prime;<sub>2''s''</sub>(''n'') such that ''r''&prime;<sub>2''s''</sub>(''n'') = δ&prime;<sub>2''s''</sub>(''n'')  for ''s'' = 1, 2, 3, and 4, and that for ''s'' > 4, δ&prime;<sub>2''s''</sub>(''n'') is a good approximation to ''r''&prime;<sub>2''s''</sub>(''n'').
 
Again, ''s'' = 1 requires a special formula:
 
:<math>
\delta'_2(n)=
\frac{\pi}{4}
\left(
\frac{c_1(4n+1)}{1}-
\frac{c_3(4n+1)}{3}+
\frac{c_5(4n+1)}{5}-
\frac{c_7(4n+1)}{7}+
\dots
\right).
</math>
 
If ''s'' is a multiple of 4,
:<math>
\delta'_{2s}(n)=
\frac{(\frac12\pi)^s}{(s-1)!}\left(n+\frac{s}4\right)^{s-1}
\left(
\frac{c_1(n+\frac{s}4)}{1^s}+
\frac{c_3(n+\frac{s}4)}{3^s}+
\frac{c_5(n+\frac{s}4)}{5^s}+
\dots
\right).
</math>
 
If ''s'' is twice an odd number,
:<math>
\delta'_{2s}(n)=
\frac{(\frac12\pi)^s}{(s-1)!}\left(n+\frac{s}4\right)^{s-1}
\left(
\frac{c_1(2n+\frac{s}2)}{1^s}+
\frac{c_3(2n+\frac{s}2)}{3^s}+
\frac{c_5(2n+\frac{s}2)}{5^s}+
\dots
\right).
</math>
 
If ''s'' is an odd number and ''s'' > 1,
:<math>
\delta'_{2s}(n)=
\frac{(\frac12\pi)^s}{(s-1)!}\left(n+\frac{s}4\right)^{s-1}
\left(
\frac{c_1(4n+s)}{1^s}-
\frac{c_3(4n+s)}{3^s}+
\frac{c_5(4n+s)}{5^s}-
\dots
\right).
</math>
 
Therefore,
 
:<math>
r'_2(n)=
\frac{\pi}{4}
\left(
\frac{c_1(4n+1)}{1}-
\frac{c_3(4n+1)}{3}+
\frac{c_5(4n+1)}{5}-
\frac{c_7(4n+1)}{7}+
\dots
\right)
</math>
 
:<math>
r'_4(n)=
\left(\tfrac12\pi\right)^2\left(n+\tfrac12\right)
\left(
\frac{c_1(2n+1)}{1}+
\frac{c_3(2n+1)}{9}+
\frac{c_5(2n+1)}{25}+
\dots
\right)
</math>
 
:<math>
r'_6(n)=
\frac{(\frac12\pi)^3}{2}\left(n+\tfrac34\right)^2
\left(
\frac{c_1(4n+3)}{1}-
\frac{c_3(4n+3)}{27}+
\frac{c_5(4n+3)}{125}-
\dots
\right)
</math>
 
:<math>
r'_8(n)=
\frac{(\frac12\pi)^4}{6}(n+1)^3
\left(
\frac{c_1(n+1)}{1}+
\frac{c_3(n+1)}{81}+
\frac{c_5(n+1)}{625}+
\dots
\right).
</math>
 
===Sums===
 
Let
 
:<math>
T_q(n) =
c_q(1) +
c_q(2)+
\dots+c_q(n)
</math>
 
and
 
:<math>
U_q(n) =
T_q(n) +
\tfrac12\phi(q).
</math>
 
Then if ''s'' > 1,
:<math>
\sigma_{-s}(1)+
\sigma_{-s}(2)+
\dots+
\sigma_{-s}(n)
</math>
 
::<math>=
\zeta(s+1)
\left(
n+
\frac{T_2(n)}{2^{s+1}}+
\frac{T_3(n)}{3^{s+1}}+
\frac{T_4(n)}{4^{s+1}}
+\dots
\right)
</math>
 
::<math>=
\zeta(s+1)
\left(
n+\tfrac12+
\frac{U_2(n)}{2^{s+1}}+
\frac{U_3(n)}{3^{s+1}}+
\frac{U_4(n)}{4^{s+1}}
+\dots
\right)-
\tfrac12\zeta(s)
,
</math>
 
:<math>
d(1)+
d(2)+
\dots+
d(n)
</math>
 
::<math>=
-\frac{T_2(n)\log2}{2}
-\frac{T_3(n)\log3}{3}
-\frac{T_4(n)\log4}{4}
-\dots
,
</math>
 
:<math>
d(1)\log1+
d(2)\log2+
\dots+
d(n)\log n
</math>
 
::<math>=
-\frac{T_2(n)(2\gamma\log2-\log^22)}{2}
-\frac{T_3(n)(2\gamma\log3-\log^23)}{3}
-\frac{T_4(n)(2\gamma\log4-\log^24)}{4}
-\dots
,
</math>
 
:<math>
r_2(1)+
r_2(2)+
\dots+
r_2(n)
</math>
 
::<math>=
\pi
\left(
n
-\frac{T_3(n)}{3}
+\frac{T_5(n)}{5}
-\frac{T_7(n)}{7}
+\dots
\right)
.
</math>
 
==See also==
 
*[[Gaussian period]]
*[[Kloosterman sum]]
 
==Notes==
 
{{reflist}}
 
==References==
 
*{{citation
  | last1 = Hardy  | first1 = G. H.
  | title = Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work
  | publisher = AMS / Chelsea
  | location = Providence RI
  | year = 1999
  | isbn = 978-0-8218-2023-0}}
 
*{{citation
  | last1 = Hardy  | first1 = G. H.
  | last2 = Wright | first2 = E. M.
  | title = An Introduction to the Theory of Numbers (Fifth edition)
  | publisher = [[Oxford University Press]]
  | location = Oxford
  | year = 1980
  | isbn = 978-0-19-853171-5}}
 
*{{citation
  | last1 = Knopfmacher | first1 = John
  | title = Abstract Analytic Number Theory
  | publisher = Dover
  | location = New York
  | year = 1990
  | isbn = 0-486-66344-2}}
 
*{{citation
  | title=Additive Number Theory: the Classical Bases 
  | volume=164
  | series=Graduate Texts in Mathematics
  | last=Nathanson
  | first=Melvyn B.
  | publisher=Springer-Verlag
  | year=1996 | isbn=0-387-94656-X }}  Section A.7.
 
*{{citation
  | last1 = Ramanujan  | first1 = Srinivasa
  | title = On Certain Trigonometric Sums and their Applications in the Theory of Numbers
  | journal = Transactions of the Cambridge Philosophical Society
  | volume = 22
  | issue = 15
  | year = 1918
  | pages = 259&ndash;276}} (pp.&nbsp;179&ndash;199 of his ''Collected Papers'')
 
*{{citation
  | last1 = Ramanujan  | first1 = Srinivasa
  | title = On Certain Arithmetical Functions
  | journal = Transactions of the Cambridge Philosophical Society
  | volume = 22
  | issue = 9
  | year = 1916
  | pages = 159&ndash;184}} (pp.&nbsp;136&ndash;163 of his ''Collected Papers'')
 
*{{citation
  | last1 = Ramanujan  | first1 = Srinivasa
  | title = Collected Papers
  | publisher = AMS / Chelsea
  | location = Providence RI
  | year = 2000
  | isbn = 978-0-8218-2076-6}}
 
==External links==
* László  Tóth, [http://arxiv.org/pdf/1104.1906.pdf Sums of products of Ramanujan sums]
 
[[Category:Number theory]]
[[Category:Srinivasa Ramanujan]]

Latest revision as of 20:36, 22 August 2014

Alyson Meagher is the title her parents gave her but she doesn't like when people use her complete title. To play lacross is something he would never give up. Since he was eighteen he's been operating as an information officer but he ideas on changing it. For many years she's been residing in Kentucky but her husband wants them to move.

Feel free to visit my web blog: best psychic readings