|
|
Line 1: |
Line 1: |
| In mathematics, the '''Prouhet–Tarry–Escott problem''' asks for two disjoint [[Set (mathematics)|sets]] ''A'' and ''B'' of ''n'' [[integer]]s each, such that:
| | Parole or Probation Officer Dorothy from Fort Saskatchewan, loves to spend some time house plants, como ganhar dinheiro na internet and badge collecting. During the previous year has completed a visit to Djoudj National Bird Sanctuary.<br><br>my web page :: [http://comoganhardinheironainternet.comoganhardinheiro101.com ganhando dinheiro na internet] |
| | |
| :<math>\sum_{a\in A} a^i = \sum_{b\in B} b^i</math>
| |
| | |
| for each integer ''i'' from 1 to a given ''k''.<ref name="Borwein">{{harvnb|Borwein|p=85}}</ref>
| |
| | |
| This problem was named after {{link-interwiki|lang=fr|en=Eugène Prouhet}}, who studied it in the early 1850s, and [[Gaston Tarry]] and Escott, who studied it in the early 1910s.
| |
| | |
| The largest value of ''k'' for which a solution with ''n'' = ''k''+1 is known is given by ''A'' = {±22, ±61, ±86, ±127, ±140, ±151}, ''B'' = {±35, ±47, ±94, ±121, ±146, ±148} for which ''k'' = 11.<ref>[http://euler.free.fr/eslp/TarryPrb.htm#Ideal%20symmetric Solution found by Nuutti Kuosa, Jean-Charles Meyrignac and Chen Shuwen, in 1999].</ref>
| |
| | |
| == Example ==
| |
| | |
| For example, a solution with ''n'' = 6 and ''k'' = 5 is the two sets { 0, 5, 6, 16, 17, 22 }
| |
| and { 1, 2, 10, 12, 20, 21 }, because:
| |
| | |
| : 0<sup>1</sup> + 5<sup>1</sup> + 6<sup>1</sup> + 16<sup>1</sup> + 17<sup>1</sup> + 22<sup>1</sup> = 1<sup>1</sup> + 2<sup>1</sup> + 10<sup>1</sup> + 12<sup>1</sup> + 20<sup>1</sup> + 21<sup>1</sup>
| |
| | |
| : 0<sup>2</sup> + 5<sup>2</sup> + 6<sup>2</sup> + 16<sup>2</sup> + 17<sup>2</sup> + 22<sup>2</sup> = 1<sup>2</sup> + 2<sup>2</sup> + 10<sup>2</sup> + 12<sup>2</sup> + 20<sup>2</sup> + 21<sup>2</sup>
| |
| | |
| : 0<sup>3</sup> + 5<sup>3</sup> + 6<sup>3</sup> + 16<sup>3</sup> + 17<sup>3</sup> + 22<sup>3</sup> = 1<sup>3</sup> + 2<sup>3</sup> + 10<sup>3</sup> + 12<sup>3</sup> + 20<sup>3</sup> + 21<sup>3</sup>
| |
| | |
| : 0<sup>4</sup> + 5<sup>4</sup> + 6<sup>4</sup> + 16<sup>4</sup> + 17<sup>4</sup> + 22<sup>4</sup> = 1<sup>4</sup> + 2<sup>4</sup> + 10<sup>4</sup> + 12<sup>4</sup> + 20<sup>4</sup> + 21<sup>4</sup>
| |
| | |
| : 0<sup>5</sup> + 5<sup>5</sup> + 6<sup>5</sup> + 16<sup>5</sup> + 17<sup>5</sup> + 22<sup>5</sup> = 1<sup>5</sup> + 2<sup>5</sup> + 10<sup>5</sup> + 12<sup>5</sup> + 20<sup>5</sup> + 21<sup>5</sup>. | |
| | |
| ==See also==
| |
| * [[Thue–Morse sequence#The_Prouhet–Tarry–Escott_problem|Thue–Morse sequence]]
| |
| * [[Euler's sum of powers conjecture]]
| |
| * [[Beal's conjecture]]
| |
| * [[Jacobi–Madden equation]]
| |
| * [[Taxicab number]]
| |
| * [[Pythagorean quadruple]]
| |
| * [[Sums of powers]], a list of related conjectures and theorems
| |
| | |
| ==Notes==
| |
| {{reflist}}
| |
| | |
| ==References==
| |
| *{{citation | last=Borwein | first=Peter B. | authorlink=Peter Borwein | title=Computational Excursions in Analysis and Number Theory | chapter=The Prouhet–Tarry–Escott problem | pages=85–96 | series=CMS Books in Mathematics | publisher=[[Springer-Verlag]] | year=2002 | isbn=0-387-95444-9 | url=http://books.google.com/?id=A_ITwN13J6YC&pg=85#PPA85,M1 | accessdate=2009-06-16}} Chap.11.
| |
| | |
| ==External links==
| |
| *[http://www.nabble.com/Prouhet-Tarry-Escott-problem-td10624352.html Prouhet-Tarry-Escott problem]
| |
| *{{mathworld | title = Prouhet-Tarry-Escott problem | urlname = Prouhet-Tarry-EscottProblem }}
| |
| | |
| {{DEFAULTSORT:Prouhet-Tarry-Escott problem}}
| |
| [[Category:Number theory]]
| |
| [[Category:Mathematical problems]]
| |
Parole or Probation Officer Dorothy from Fort Saskatchewan, loves to spend some time house plants, como ganhar dinheiro na internet and badge collecting. During the previous year has completed a visit to Djoudj National Bird Sanctuary.
my web page :: ganhando dinheiro na internet