|
|
Line 1: |
Line 1: |
| {{No footnotes|date=March 2010}}
| | I am 36 years old and my name is Manie Ruggles. I life in Whinburgh (United Kingdom). |
| In [[theoretical physics]], '''T-symmetry''' is the theoretical [[symmetry (physics)|symmetry of physical laws]] under a '''[[time]] reversal''' [[Transformation (mathematics)|transformation]]:
| |
| :<math> T: t \mapsto -t.</math>
| |
| Although in restricted contexts one may find this symmetry, the observable [[universe]] itself does not show symmetry under time reversal, primarily due to the [[second law of thermodynamics]]. Hence time is said to be non-symmetric, or asymmetric.
| |
| | |
| Time ''asymmetries'' are generally distinguished as between those intrinsic to the dynamic [[physical law]]s, and those due to the [[Big Bang|initial conditions of our universe]].
| |
| # The T-asymmetry of the [[weak force]] is of the first kind, while
| |
| # The T-asymmetry of the [[second law of thermodynamics]] is of the second kind.
| |
| | |
| == Invariance ==
| |
| Physicists also discuss the time-reversal invariance of local and/or macroscopic descriptions of physical systems, independent of the invariance of the underlying microscopic physical laws.
| |
| For example, [[Maxwell's equations]] with material [[absorption (electromagnetic radiation)|absorption]] or Newtonian mechanics with [[friction]] are not time-reversal invariant at the macroscopic level where they are normally applied, even if they are invariant at the microscopic level; when one includes the atomic motions, the "lost" energy is translated into heat.
| |
| | |
| [[Image:teeter-totter.png|frame|A toy called the [[teeter-totter]] illustrates the two aspects of time reversal invariance. When set into motion atop a pedestal, the figure oscillates for a very long time. The toy is engineered to minimize friction and illustrate the reversibility of [[Newton's laws of motion]]. However, the mechanically stable state of the toy is when the figure falls down from the pedestal into one of arbitrarily many positions. This is an illustration of the law of increase of [[entropy]] through [[Boltzmann]]'s identification of the logarithm of the number of states with the entropy.]]
| |
| | |
| == Macroscopic phenomena: the second law of thermodynamics ==
| |
| | |
| Our daily experience shows that T-symmetry does not hold for the behavior of bulk materials. Of these macroscopic laws, most notable is the [[second law of thermodynamics]]. Many other phenomena, such as the relative motion of bodies with friction, or viscous motion of fluids, reduce to this, because the underlying mechanism is the dissipation of usable energy (for example, kinetic energy) into heat.
| |
| | |
| The question of whether this time-asymmetric dissipation is really inevitable has been considered by many physicists, often in the context of '''[[Maxwell's demon]]'''. The name comes from a [[thought experiment]] described by [[James Clerk Maxwell]] in which a microscopic demon guards a gate between two halves of a room. It only lets slow molecules into one half, only fast ones into the other. By eventually making one side of the room cooler than before and the other hotter, it seems to reduce the [[entropy]] of the room, and reverse the arrow of time. Many analyses have been made of this; all show that when the entropy of room and demon are taken together, this total entropy does increase. Modern analyses of this problem have taken into account [[Claude E. Shannon]]'s relation between [[information entropy|entropy and information]]. Many interesting results in modern computing are closely related to this problem — [[reversible computing]], [[quantum computing]] and [[physical limits to computing]], are examples. These seemingly metaphysical questions are today, in these ways, slowly being converted to the stuff of the physical sciences.
| |
| | |
| The current consensus hinges upon the Boltzmann-Shannon identification of the logarithm of [[phase space]] volume with the negative of [[information|Shannon information]], and hence to [[entropy]]. In this notion, a fixed initial state of a macroscopic system corresponds to relatively low entropy because the coordinates of the molecules of the body are constrained. As the system evolves in the presence of dissipation, the molecular coordinates can move into larger volumes of phase space, becoming more uncertain, and thus leading to increase in entropy.
| |
| | |
| One can, however equally well imagine a state of the universe in which the motions of all of the particles at one instant were the reverse (strictly, the [[CPT-symmetry|CPT reverse]]). Such a state would then evolve in reverse, so presumably entropy would decrease ([[Loschmidt's paradox]]). Why is 'our' state preferred over the other?
| |
| | |
| One position is to say that the constant increase of entropy we observe happens ''only'' because of the initial state of our universe. Other possible states of the universe (for example, a universe at [[Heat death of the Universe|heat death]] equilibrium) would actually result in no increase of entropy. In this view, the apparent T-asymmetry of our universe is a problem in [[physical cosmology|cosmology]]: why did the universe start with a low entropy? This view, if it remains viable in the light of future cosmological observation, would connect this problem to one of the big open questions beyond the reach of today's physics — the question of ''initial conditions'' of the universe.
| |
| | |
| ==Macroscopic phenomena: black holes==
| |
| | |
| An object can cross through the [[event horizon]] of a [[black hole]] from the outside, and then fall rapidly to the central region where our understanding of physics breaks down. Since within a black hole the forward light-cone is directed towards the center and the backward light-cone is directed outward, it is not even possible to define time-reversal in the usual manner. The only way anything can escape from a black hole is as [[Hawking radiation]].
| |
| | |
| The time reversal of a black hole would be a hypothetical object known as a [[white hole]]. From the outside they appear similar. While a black hole has a beginning and is inescapable, a white hole has an ending and cannot be entered. The forward light-cones of a white hole are directed outward; and its backward light-cones are directed towards the center.
| |
| | |
| The event horizon of a black hole may be thought of as a surface moving outward at the local speed of light and is just on the edge between escaping and falling back. The event horizon of a white hole is a surface moving inward at the local speed of light and is just on the edge between being swept outward and succeeding in reaching the center. They are two different kinds of horizons—the horizon of a white hole is like the horizon of a black hole turned inside-out.
| |
| | |
| The modern view of black hole irreversibility is to relate it to the [[second law of thermodynamics]], since black holes are viewed as [[Black hole thermodynamics|thermodynamic objects]]. Indeed, according to the [[String theory#Gauge-gravity duality|Gauge-gravity duality]] conjecture, all microscopic processes in a black hole are reversible, and only the collective behavior is irreversible, as in any other macroscopic, thermal system.{{Citation needed|date=April 2010}}
| |
| | |
| ==Kinetic consequences: detailed balance and Onsager reciprocal relations==
| |
| | |
| In physical and [[chemical kinetics]], T-symmetry of the mechanical microscopic equations implies two important laws: the principle of [[detailed balance]] and the [[Onsager reciprocal relations]]. T-symmetry of the microscopic description together with its kinetic consequences are called [[microscopic reversibility]].
| |
| | |
| ==Effect of time reversal on some variables of classical physics==
| |
| | |
| ===Even===
| |
| Classical variables that do not change upon time reversal include:
| |
| :<math>\vec x\!</math>, Position of a particle in three-space
| |
| :<math>\vec a\!</math>, Acceleration of the particle
| |
| :<math>\vec F\!</math>, Force on the particle
| |
| :<math>E\!</math>, Energy of the particle
| |
| :<math>\phi\!</math>, Electric potential (voltage)
| |
| :<math>\vec E\!</math>, Electric field
| |
| :<math>\vec D\!</math>, Electric displacement
| |
| :<math>\rho\!</math>, Density of electric charge
| |
| :<math>\vec P\!</math>, Electric polarization
| |
| :[[Energy density]] of the electromagnetic field
| |
| :[[Maxwell stress tensor]]
| |
| :All masses, charges, coupling constants, and other physical constants, except those associated with the weak force.
| |
| | |
| ===Odd===
| |
| Classical variables that time reversal negates include:
| |
| :<math>t\!</math>, The time when an event occurs
| |
| :<math>\vec v\!</math>, Velocity of a particle
| |
| :<math>\vec p\!</math>, Linear momentum of a particle
| |
| :<math>\vec l\!</math>, Angular momentum of a particle (both orbital and spin)
| |
| :<math>\vec A\!</math>, Electromagnetic vector potential
| |
| :<math>\vec B\!</math>, Magnetic induction
| |
| :<math>\vec H\!</math>, Magnetic field
| |
| :<math>\vec j\!</math>, Density of electric current
| |
| :<math>\vec M\!</math>, Magnetization
| |
| :<math>\vec S\!</math>, [[Poynting vector]]
| |
| :Power (rate of work done).
| |
| | |
| ==Microscopic phenomena: time reversal invariance==
| |
| | |
| Since most systems are asymmetric under time reversal, it is interesting to ask whether there are phenomena that do have this symmetry. In classical mechanics, a velocity ''v'' reverses under the operation of ''T'', but an acceleration does not. Therefore, one models dissipative phenomena through terms that are odd in
| |
| ''v''. However, delicate experiments in which known sources of dissipation are removed reveal that the laws of mechanics are time reversal invariant. Dissipation itself is originated in the [[second law of thermodynamics]].
| |
| | |
| The motion of a charged body in a magnetic field, ''B'' involves the velocity through the [[Lorentz force]] term ''v''×''B'', and might seem at first to be asymmetric under ''T''. A closer look assures us that ''B'' also changes sign under time reversal. This happens because a magnetic field is produced by an electric current, ''J'', which reverses sign under ''T''. Thus, the motion of classical charged particles in [[electromagnetic field]]s is also time reversal invariant. (Despite this, it is still useful to consider the time-reversal non-invariance in a ''local'' sense when the external field is held fixed, as when the [[magneto-optic effect]] is analyzed. This allows one to analyze the conditions under which optical phenomena that locally break time-reversal, such as [[Faraday isolator]]s and [http://magnetooptics.phy.bme.hu/research/topics/optical-properties-of-multiferroic-materials/ directional dichroism], can occur.) The laws of gravity also seem to be time reversal invariant in classical mechanics.
| |
| | |
| In [[physics]] one separates the laws of motion, called [[kinematics]], from the laws of force, called [[dynamics (mechanics)|dynamics]]. Following the classical kinematics of [[Newton's laws of motion]], the kinematics of [[quantum mechanics]] is built in such a way that it presupposes nothing about the time reversal symmetry of the dynamics. In other words, if the dynamics are invariant, then the kinematics will allow it to remain invariant; if the dynamics is not, then the kinematics will also show this. The structure of the quantum laws of motion are richer, and we examine these next.
| |
| | |
| ===Time reversal in quantum mechanics===
| |
| | |
| [[Image:parity 1drep.png|frame|Two-dimensional representations of [[parity (physics)|parity]] are given by a pair of quantum states that go into each other under parity. However, this representation can always be reduced to linear combinations of states, each of which is either even or odd under parity. One says that all [[irreducible representation]]s of parity are one-dimensional. '''Kramers' theorem''' states that time reversal need not have this property because it is represented by an anti-unitary operator.]]
| |
| | |
| This section contains a discussion of the three most important properties of time reversal in quantum mechanics; chiefly,
| |
| #that it must be represented as an anti-unitary operator,
| |
| #that it protects non-degenerate quantum states from having an [[electric dipole moment]],
| |
| #that it has two-dimensional representations with the property ''T''<sup>2</sup> = −1.
| |
| The strangeness of this result is clear if one compares it with parity. If parity transforms a pair of [[quantum states]] into each other, then the sum and difference of these two basis states are states of good parity. Time reversal does not behave like this. It seems to violate the theorem that all [[abelian group]]s be represented by one dimensional irreducible representations. The reason it does this is that it is represented by an anti-unitary operator. It thus opens the way to [[spinor]]s in quantum mechanics.
| |
| | |
| ===Anti-unitary representation of time reversal===
| |
| | |
| [[Eugene Wigner]] showed that a symmetry operation ''S'' of a Hamiltonian is represented, in [[quantum mechanics]] either by a '''unitary''' operator, ''S'' = ''U'', or an '''[[antiunitary]]''' one, ''S'' = ''UK'' where ''U'' is [[unitary operator|unitary]], and ''K'' denotes [[complex conjugation]]. These are the only operations that acts on Hilbert space so as to preserve the ''length'' of the projection of any one state-vector onto another state-vector.
| |
| | |
| Consider the [[parity (physics)|parity]] operator. Acting on the position, it reverses the directions of space, so that ''P<sup>−1</sup>xP'' = −''x''. Similarly, it reverses the direction of ''momentum'', so that ''PpP<sup>−1</sup>'' = −''p'', where ''x'' and ''p'' are the position and momentum operators. This preserves the [[canonical commutation relation|canonical commutator]] [''x'', ''p''] = ''iħ'', where ''ħ'' is the [[reduced Planck constant]], only if ''P'' is chosen to be unitary, ''PiP<sup>−1</sup>'' = ''i''.
| |
| | |
| On the other hand, for time reversal, the time-component of the momentum is the energy. If time reversal were implemented as a unitary operator, it would reverse the sign of the energy just as space-reversal reverses the sign of the momentum. This is not possible, because, unlike momentum, energy is always positive. Since energy in quantum mechanics is defined as the phase factor exp(-iEt) that one gets when one moves forward in time, the way to reverse time while preserving the sign of the energy is to reverse the sense of "i", so that the sense of phases is reversed.
| |
| | |
| Similarly, any operation that reverses the sense of phase, which changes the sign of i, will turn positive energies into negative energies unless it also changes the direction of time. So every antiunitary symmetry in a theory with positive energy must reverse the direction of time. The only antiunitary symmetry is time reversal, together with a unitary symmetry that does not reverse time.
| |
| | |
| Given the ''time reversal'' operator ''T'', it does nothing to the x-operator, ''TxT<sup>−1</sup>'' = ''x'', but it reverses the direction of p, so that ''TpT<sup>−1</sup>'' = −''p''. The canonical commutator is invariant only if ''T'' is chosen to be anti-unitary, i.e., ''TiT<sup>−1</sup>'' = −''i''. For a [[elementary particle|particle]] with spin ''J'', one can use the representation
| |
| | |
| ::<math>T = e^{-i\pi J_y/\hbar} K,</math>
| |
| | |
| where ''J''<sub>''y''</sub> is the ''y''-component of the spin, and use of ''TJT<sup>−1</sup>'' = −J has been made.
| |
| | |
| ===Electric dipole moments===
| |
| | |
| This has an interesting consequence on the [[electric dipole moment]] (EDM) of any particle. The EDM is defined through the shift in the energy of a state when it is put in an external electric field: Δ''e'' = d·''E'' + ''E''·δ·''E'', where ''d'' is called the EDM and δ, the induced dipole moment. One important property of an EDM is that the energy shift due to it changes sign under a parity transformation. However, since '''d''' is a vector, its expectation value in a state |ψ> must be proportional to <ψ| ''J'' |ψ>. Thus, under time reversal, an invariant state must have vanishing EDM. In other words, a non-vanishing EDM signals both ''P'' and ''T'' symmetry-breaking.
| |
| | |
| It is interesting to examine this argument further, since one feels that some molecules, such as water, must have EDM irrespective of whether '''T''' is a symmetry. This is correct: if a quantum system has degenerate ground states that transform into each other under parity, then time reversal need not be broken to give EDM.
| |
| | |
| Experimentally observed bounds on the [[neutron electric dipole moment|electric dipole moment of the nucleon]] currently set stringent limits on the violation of time reversal symmetry in the [[strong interactions]], and their modern theory: [[quantum chromodynamics]]. Then, using the [[CPT invariance]] of a relativistic [[quantum field theory]], this puts [[CryoEDM|strong bounds]] on [[strong CP violation]].
| |
| | |
| Experimental bounds on the [[electron electric dipole moment]] also place limits on theories of particle physics and their parameters.
| |
| | |
| ===Kramers' theorem===
| |
| {{Main|Kramers' degeneracy theorem}}
| |
| | |
| For ''T'', which is an anti-unitary ''Z''<sub>2</sub> symmetry generator
| |
| | |
| ::''T''<sup>2</sup> = ''UKUK'' = ''U U''<sup>*</sup> = ''U'' (''U''<sup>''T''</sup>)<sup>−1</sup> = Φ,
| |
| where Φ is a diagonal matrix of phases. As a result, ''U'' = Φ''U''<sup>''T''</sup> and ''U''<sup>''T''</sup> = ''U''Φ, showing that
| |
| | |
| ::''U'' = Φ ''U'' Φ.
| |
| | |
| This means that the entries in Φ are ±1, as a result of which one may have either ''T''<sup>2</sup> = ±1. This is specific to the anti-unitarity of ''T''. For a unitary operator, such as the [[parity (physics)|parity]], any phase is allowed.
| |
| | |
| Next, take a Hamiltonian invariant under ''T''. Let |''a''> and ''T''|''a''> be two quantum states of the same energy. Now, if ''T''<sup>2</sup> = −1, then one finds that the states are orthogonal: a result called '''Kramers' theorem'''. This implies that if ''T''<sup>2</sup> = −1, then there is a twofold degeneracy in the state. This result in non-relativistic [[quantum mechanics]] presages the [[spin statistics theorem]] of [[quantum field theory]].
| |
| | |
| [[Quantum state]]s that give unitary representations of time reversal, i.e., have '''T<sup>2</sup>=1''', are characterized by a [[multiplicative quantum number]], sometimes called the '''T-parity'''.
| |
| | |
| Time reversal transformation for fermions in quantum field theories can be represented by an [http://arxiv.org/abs/hep-th/0010074 8-component spinor] in which the above mentioned '''T-parity''' can be a complex number with unit radius. The CPT invariance is not a theorem but a '''better to have''' property in these class of theories.
| |
| | |
| ===Time reversal of the known dynamical laws===
| |
| | |
| [[Particle physics]] codified the basic laws of dynamics into the [[standard model]]. This is formulated as a [[quantum field theory]] that has [[CPT symmetry]], i.e., the laws are invariant under simultaneous operation of time reversal, [[parity (physics)|parity]] and [[charge conjugation]]. However, time reversal itself is seen not to be a symmetry (this is usually called [[CP violation]]). There are two possible origins of this asymmetry, one through the [[CKM matrix|mixing]] of different [[flavour (particle physics)|flavour]]s of quarks in their [[Weak interaction|weak decay]]s, the second through a direct CP violation in strong interactions. The first is seen in experiments, the second is strongly constrained by the non-observation of the [[Neutron electric dipole moment|EDM of a neutron]].
| |
| | |
| It is important to stress that this time reversal violation is unrelated to the [[second law of thermodynamics]], because due to the conservation of the [[CPT symmetry]], the effect of time reversal is to rename [[elementary particle|particle]]s as [[antiparticle]]s and ''vice versa''. Thus the [[second law of thermodynamics]] is thought to originate in the [[initial conditions]] in the universe.
| |
| | |
| == See also ==
| |
| * The [[second law of thermodynamics]], [[Maxwell's demon]] and the [[arrow of time]] (also [[Loschmidt's paradox]]).
| |
| * [[Microscopic reversibility]]
| |
| * [[Detailed balance]]
| |
| * Applications to [[reversible computing]] and [[quantum computing]], including [[Physical limits to computing|limits to computing]].
| |
| * The [[standard model]] of particle physics, [[CP violation]], the [[CKM matrix]] and the [[strong CP problem]]
| |
| * [[Neutrino mass]]es and [[CPT invariance]].
| |
| * [[Wheeler–Feynman absorber theory]]
| |
| * [[Teleonomy]]
| |
| | |
| == References ==
| |
| *Maxwell's demon: entropy, information, computing, edited by H.S.Leff and A.F. Rex (IOP publishing, 1990) [ISBN 0-7503-0057-4]
| |
| *Maxwell's demon, 2: entropy, classical and quantum information, edited by H.S.Leff and A.F. Rex (IOP publishing, 2003) [ISBN 0-7503-0759-5]
| |
| *The emperor's new mind: concerning computers, minds, and the laws of physics, by Roger Penrose (Oxford university press, 2002) [ISBN 0-19-286198-0]
| |
| *{{cite book|author=Sozzi, M.S.|title=Discrete symmetries and CP violation|publisher=Oxford University Press|year=2008|isbn=978-0-19-929666-8}}
| |
| *{{cite book|author=Birss, R. R.|title=Symmetry and Magnetism|publisher=John Wiley & Sons, Inc., New York|year=1964}}
| |
| *[http://magnetooptics.phy.bme.hu/research/topics/optical-properties-of-multiferroic-materials/ Multiferroic] materials with time-reversal breaking optical properties
| |
| *CP violation, by I.I. Bigi and A.I. Sanda (Cambridge University Press, 2000) [ISBN 0-521-44349-0]
| |
| *[http://pdg.lbl.gov/2004/reviews/cpviolrpp.pdf Particle Data Group on CP violation]
| |
| **the [http://www-public.slac.stanford.edu/babar/ Babar] experiment in [[SLAC]]
| |
| **the [http://belle.kek.jp BELLE] experiment in [[KEK]]
| |
| **the [http://kpasa.fnal.gov:8080/public/ktev.html KTeV] experiment in [[Fermilab]]
| |
| **the [http://cplear.web.cern.ch/cplear/Welcome.html CPLEAR] experiment in [[CERN]]
| |
| | |
| <!-- footer templates -->
| |
| {{C, P and T}}
| |
| {{Time Topics}}
| |
| {{Time measurement and standards}}
| |
| | |
| {{DEFAULTSORT:T-Symmetry}}
| |
| <!-- categories -->
| |
| [[Category:Time]]
| |
| [[Category:Thermodynamics]]
| |
| [[Category:Statistical mechanics]]
| |
| [[Category:Philosophy of thermal and statistical physics]]
| |
| [[Category:Quantum mechanics]]
| |
| [[Category:Quantum field theory]]
| |
| [[Category:Particle physics]]
| |
| [[Category:Symmetry]]
| |