Biclustering: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>David Eppstein
Undo per WP:COI. The citation record does not show this to be a significant aspect of this subject.
 
en>Ms2ger
m Drop the unterminated references-small div
Line 1: Line 1:
== New Balance Shoes Usa Gasprijzen kan Skyhigh deze dagen ==
{{other uses|Skeleton (disambiguation)}}


Gasprijzen kan Skyhigh deze dagen, en het openbaar vervoer staat altijd het risico van te laat of slecht functioneert. Je hoeft alleen maar geld om het te starten, de perfecte locatie, Constructieve wat [http://www.gasgaugedirect.com/descriptions/library/pear.asp?a=70 New Balance Shoes Usa] je hoeft te isit onthouden is erg lastig! Veel van degenen die beweren dat cannabis moeten worden gekweekt illegaal lichaam en geest, een verschil van marihuana beleid landelijk.. <br><br>Deze app stelt u [http://www.gasgaugedirect.com/descriptions/library/pear.asp?a=53 New Balance Sale Nl] in staat om alle gegevens die je nodig [http://www.gasgaugedirect.com/descriptions/library/pear.asp?a=84 New Balance Sale] zou hebben bij de opsomming van een onroerend goed in Amerika op te nemen. Het was ongeveer 8 jaar voordat iemand anders begon een vergelijkbare site op dit gebied .. "Dat God in ons woont, dat deze organen zijn niet de onze." Ik weet niet zeker wat te schijnsel van dit, anders dan misschien wat ik zei over het vorige citaat ik gaf. We zullen een reële marktwaarde te betalen en het bedrijf toelaten om te blijven doen [http://www.gasgaugedirect.com/descriptions/library/pear.asp?a=89 New Balance Heren] wat zij heeft gedaan.. <br><br>Ik zou denken dat onze kinderen verdienen niets minder .. Het kan geen kwaad, en alleen maar helpen. Brigham vertelde de kinderen dat ze niet betrokken was, dan eiste ze in de auto, zodat zij ze naar Dr kon brengen Dit is een grote onder ogen behandeling. Dus het is makkelijk te krijgen in AAU, maar hun klassen zijn echte college kunstlessen, dus je moet bereid zijn om het werk te doen, zoals op elk kunstacademie.. <br><br>Ik ervan overtuigd dat een enorme bron van verwijzingen wacht op hen met Facebook strategisch op te zetten fan pagina's die zijn verbonden door eerdere klanten, zelfs als dat betekent dat het betalen van hen om het toe te voegen aan hun profiel. Nog steeds proberen om te zien als meer informatie als je kunt aan die boom.. <br><br>Smajdor heeft geschreven over en betrokken geweest bij een aantal projecten te bespreken en het bevorderen van toekomstige reproductieve technologieën, zoals het gebruik van kunstmatige gameten. Zoals ik staarde uit het raam van de bus, ik kon niet helpen, maar vraag me af hoe er kon een vlinder heiligdom en natuurgebied op slechts een paar uur afstand ... <br><br>St George is een cijfer dat veel van de wereld rond kan verzamelen in een geest van eenheid, vieren samen. De volgende logische stap in de evolutie van de Gilder Technology Report (door Gilder Publishing, LLC gepubliceerd in samenwerking met Forbes Inc, 19962007), de Gilder telecosmos Forum, is een online community waar honderden investeerders, ondernemers, ingenieurs en geld managers, waaronder George Gilder, Charlie Burger, en voormalig GTR analisten en redacteurs, verzamelen dagelijks om beleggingsadvies en debat technologie, beleggen, economie, politiek en financiën te delen..<ul>
In [[mathematics]], a '''skeleton''' of a [[category (category theory)|category]] is a [[subcategory]] which, roughly speaking, does not contain any extraneous [[isomorphism]]s. In a certain sense, the skeleton of a category is the "smallest" [[equivalence of categories|equivalent]] category which captures all "categorical properties". In fact, two categories are [[equivalence of categories|equivalent]] [[iff|if and only if]] they have [[isomorphism of categories|isomorphic]] skeletons. A category is called '''skeletal''' if isomorphic objects are necessarily identical.
 
 
  <li>[http://www.qwol.com.cn/thread-27415-1-1.shtml http://www.qwol.com.cn/thread-27415-1-1.shtml]</li>
== Definition ==
 
 
  <li>[http://www.phyll.com.cn/forum.php?mod=viewthread&tid=199448&fromuid=19496 http://www.phyll.com.cn/forum.php?mod=viewthread&tid=199448&fromuid=19496]</li>
A skeleton of a category ''C'' is a [[subcategory|full]], isomorphism-dense [[subcategory]] ''D'' in which no two distinct objects are isomorphic. In detail, a skeleton of ''C'' is a category ''D'' such that:
 
 
  <li>[http://yesbet.org/forum.php?mod=viewthread&tid=494386 http://yesbet.org/forum.php?mod=viewthread&tid=494386]</li>
*Every object of ''D'' is an object of ''C''.
 
*(Fullness) For every pair of objects ''d''<sub>1</sub> and ''d''<sub>2</sub> of ''D'', the [[morphism]]s in ''D'' are precisely the morphisms in ''C'', i.e.
  <li>[http://website.242000.com/news/html/?24248.html http://website.242000.com/news/html/?24248.html]</li>
:<math>hom_D(d_1, d_2) = hom_C(d_1, d_2)</math>
 
*For every object ''d'' of ''D'', the ''D''-identity on ''d'' is the ''C''-identity on ''d''.
  <li>[http://www.observatoiredesreligions.fr/spip.php?article11 http://www.observatoiredesreligions.fr/spip.php?article11]</li>
*The composition law in ''D'' is the restriction of the composition law in ''C'' to the morphisms in ''D''.
 
*(Isomorphism-dense) Every ''C''-object is isomorphic to some ''D''-object.
</ul>
*No two distinct ''D''-objects are isomorphic.
 
== Existence and uniqueness ==
 
It is a basic fact that every small category has a skeleton; more generally, every [[accessible category]] has a skeleton. (This is equivalent to the [[axiom of choice]].) Also, although a category may have many distinct skeletons, any two skeletons are [[isomorphism of categories|isomorphic as categories]], so [[up to]] isomorphism of categories, the skeleton of a category is [[unique]].
 
The importance of skeletons comes from the fact that they are (up to isomorphism of categories), canonical representatives of the equivalence classes of categories under the [[equivalence relation]] of [[equivalence of categories]]. This follows from the fact that any skeleton of a category ''C'' is [[equivalence of categories|equivalent]] to ''C'', and that two categories are equivalent if and only if they have isomorphic skeletons.
 
== Examples ==
 
*The category '''[[category of sets|Set]]''' of all [[Set (mathematics)|sets]] has the subcategory of all [[cardinal number]]s as a skeleton.
*The category '''[[category of vector spaces|K-Vect]]''' of all [[vector space]]s over a fixed [[field (mathematics)|field]] <math>K</math> has the subcategory consisting of all powers <math>K^n</math>, where ''n'' is any cardinal number, as a skeleton; the maps <math>K^m \to K^n</math> are exactly the ''n''&times;''m'' [[Matrix (mathematics)|matrices]] with entries in ''K''.
*'''[[FinSet]]''', the category of all [[finite set]]s has '''[[FinOrd]]''', the category of all finite [[ordinal numbers]], as a skeleton.
*The category of all [[well-order|well-ordered sets]] has the subcategory of all [[ordinal numbers]] as a skeleton.
*A [[preorder]], i.e. a small category such that for every pair of objects <math> A,B </math>, the set <math> Hom(A,B)</math> either has one element or is empty, has a [[partially ordered set]] as a skeleton.
 
==References==
 
* Adámek, Jiří, Herrlich, Horst, & Strecker, George E. (1990). [http://katmat.math.uni-bremen.de/acc/acc.pdf ''Abstract and Concrete Categories'']. Originally publ. John Wiley & Sons. ISBN 0-471-60922-6. (now free on-line edition)
* Robert Goldblatt (1984). ''Topoi, the Categorial Analysis of Logic'' (Studies in logic and the foundations of mathematics, 98). North-Holland. Reprinted 2006 by Dover Publications.
 
[[Category:Category theory]]

Revision as of 15:39, 4 January 2014

I'm Fernando (21) from Seltjarnarnes, Iceland.
I'm learning Norwegian literature at a local college and I'm just about to graduate.
I have a part time job in a the office.

my site; wellness [continue reading this..]

In mathematics, a skeleton of a category is a subcategory which, roughly speaking, does not contain any extraneous isomorphisms. In a certain sense, the skeleton of a category is the "smallest" equivalent category which captures all "categorical properties". In fact, two categories are equivalent if and only if they have isomorphic skeletons. A category is called skeletal if isomorphic objects are necessarily identical.

Definition

A skeleton of a category C is a full, isomorphism-dense subcategory D in which no two distinct objects are isomorphic. In detail, a skeleton of C is a category D such that:

  • Every object of D is an object of C.
  • (Fullness) For every pair of objects d1 and d2 of D, the morphisms in D are precisely the morphisms in C, i.e.
homD(d1,d2)=homC(d1,d2)
  • For every object d of D, the D-identity on d is the C-identity on d.
  • The composition law in D is the restriction of the composition law in C to the morphisms in D.
  • (Isomorphism-dense) Every C-object is isomorphic to some D-object.
  • No two distinct D-objects are isomorphic.

Existence and uniqueness

It is a basic fact that every small category has a skeleton; more generally, every accessible category has a skeleton. (This is equivalent to the axiom of choice.) Also, although a category may have many distinct skeletons, any two skeletons are isomorphic as categories, so up to isomorphism of categories, the skeleton of a category is unique.

The importance of skeletons comes from the fact that they are (up to isomorphism of categories), canonical representatives of the equivalence classes of categories under the equivalence relation of equivalence of categories. This follows from the fact that any skeleton of a category C is equivalent to C, and that two categories are equivalent if and only if they have isomorphic skeletons.

Examples

References

  • Adámek, Jiří, Herrlich, Horst, & Strecker, George E. (1990). Abstract and Concrete Categories. Originally publ. John Wiley & Sons. ISBN 0-471-60922-6. (now free on-line edition)
  • Robert Goldblatt (1984). Topoi, the Categorial Analysis of Logic (Studies in logic and the foundations of mathematics, 98). North-Holland. Reprinted 2006 by Dover Publications.