Choked flow: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>AnomieBOT
m Dating maintenance tags: {{Citation needed}}
 
Line 1: Line 1:
The author is known as Irwin Wunder but it's not the most masucline name out there. South Dakota is where I've always been residing. My working day job is a meter reader. Body developing is what my family members and I enjoy.<br><br>My web blog: std testing at home - [http://faculty.jonahmancini.com/groups/solid-advice-for-dealing-with-a-candida-albicans/members/ discover here] -
{{for|the theorem in algebraic number theory|Bauer's theorem}}
In [[mathematics]], the '''Bauer–Fike theorem''' is a standard result in the [[perturbation theory]] of the [[eigenvalue]] of a complex-valued [[diagonalizable|diagonalizable matrix]]. In its substance, it states an absolute upper bound for the deviation of one perturbed matrix eigenvalue from a properly chosen eigenvalue of the exact matrix. Informally speaking, what it says is that ''the sensitivity of the eigenvalues is estimated by the condition number of the matrix of eigenvectors''.
 
==Theorem ([[Friedrich L. Bauer]], C.T.Fike – 1960)==
Let <math>A\in\mathbb{C}^{n,n}</math> be a [[diagonalizable|diagonalizable matrix]], and <math>V\in\mathbb{C}^{n,n}</math> be the non-singular [[eigenvector]] matrix such that <math>A=V\Lambda V^{-1}</math>. Moreover, let <math>\mu</math> be an eigenvalue of the matrix <math>A+\delta A</math>; then an eigenvalue <math>\lambda\in\sigma(A)</math> exists such that:
 
:<math>|\lambda-\mu|\leq\kappa_p (V)\|\delta A\|_p</math>
 
where <math>\kappa_p(V)=\|V\|_p\|V^{-1}\|_p</math> is the usual [[condition number]] in [[matrix norm|p-norm]].
 
===Proof===
 
If <math>\mu\in\sigma(A)</math>, we can choose <math>\lambda=\mu</math> and the thesis is trivially verified (since <math>\kappa_p(V)\geq 1</math>).
 
So, be <math>\mu\notin\sigma(A)</math>. Then <math>\det(\Lambda-\mu I)\ \ne\  0</math>. <math>\mu</math> being an eigenvalue of <math>A+\delta A</math>, we have <math>\det(A+\delta A-\mu I)=0</math> and so
 
:<math>0=\det(V^{-1})\det(A+\delta A-\mu I)\det(V)=\det(\Lambda+V^{-1}\delta AV-\mu I)</math>
:<math>=\det(\Lambda-\mu I)\det[(\Lambda-\mu I)^{-1}V^{-1}\delta AV +I]</math>
 
and, since <math>\det(\Lambda-\mu I)\ \ne\  0</math> as stated above, we must have
 
:<math>\det[(\Lambda-\mu I)^{-1}V^{-1}\delta AV +I]=\ 0</math>
 
which reveals the value −1 to be an eigenvalue of the matrix <math>(\Lambda-\mu I)^{-1}V^{-1}\delta AV</math>.
 
For each [[matrix norm|consistent matrix norm]], we have <math>|\lambda|\leq\|A\|</math>, so, all ''p''-norms being consistent, we can write:
 
:<math>1\leq\|(\Lambda-\mu I)^{-1}V^{-1}\delta AV\|_p\leq\|(\Lambda-\mu I)^{-1}\|_p\|V^{-1}\|_p\|V\|_p\|\delta A\|_p</math>
:<math>=\|(\Lambda-\mu I)^{-1}\|_p\ \kappa_p(V)\|\delta A\|_p</math>
 
But <math>(\Lambda-\mu I)^{-1}</math> being a diagonal matrix, the ''p''-norm is easily computed, and yields:
 
:<math>\|(\Lambda-\mu I)^{-1}\|_p\ =\max_{\|\mathbf{x}\|_p\ne 0} \frac{\|(\Lambda-\mu I)^{-1}\mathbf{x}\|_p}{\|\mathbf{x}\|_p}\ </math>
:<math>=\max_{\lambda\in\sigma(A)}\frac{1}{|\lambda -\mu|}\ =\ \frac{1}{\min_{\lambda\in\sigma(A)}|\lambda-\mu|}</math>
 
whence:
 
:<math>\min_{\lambda\in\sigma(A)}|\lambda-\mu|\leq\ \kappa_p(V)\|\delta A\|_p.\,</math>
 
The theorem can also be reformulated to better suit numerical methods.
In fact, dealing with real eigensystem problems, one often has an exact matrix <math>A</math>, but knows only an approximate eigenvalue-eigenvector couple, (<math>\tilde{\lambda}</math>,<math>\tilde{\mathbf{v}}</math>), and needs to bound the error. The following version comes in help.
 
==Theorem ([[Friedrich L. Bauer]], C.T.Fike – 1960) (alternative statement)==
 
Let <math>A\in\mathbb{C}^{n,n}</math> be a [[diagonalizable|diagonalizable matrix]], and be <math>V\in\mathbb{C}^{n,n}</math> the non singular [[eigenvector]] matrix such as <math>A=V\Lambda V^{-1}</math>. Be moreover (<math>\tilde{\lambda}</math>,<math>\mathbf{\tilde{v}}</math>) an approximate eigenvalue-eigenvector couple, and <math>\mathbf{r}=A\mathbf{\tilde{v}}-\tilde{\lambda}\mathbf{\tilde{v}}</math>; then an eigenvalue <math>\lambda\in\sigma(A)</math> exists such that:
 
:<math>|\lambda-\tilde{\lambda}|\leq\kappa_p (V)\frac{\|\mathbf{r}\|_p}{\|\mathbf{\tilde{v}}\|_p}</math>
 
where <math>\kappa_p(V)=\|V\|_p\|V^{-1}\|_p</math> is the usual [[condition number]] in [[matrix norm|p-norm]].
 
===Proof===
 
We solve this problem with Tarık's method:
m<math>\tilde{\lambda}\notin\sigma(A)</math> (otherwise, we can choose <math>\lambda=\tilde{\lambda}</math> and theorem is proven, since <math>\kappa_p(V)\geq 1</math>).
Then <math>(A-\tilde{\lambda} I)^{-1}</math> exists, so we can write:
 
:<math>\mathbf{\tilde{v}}=(A-\tilde{\lambda} I)^{-1}\mathbf{r}=V(D-\tilde{\lambda} I)^{-1}V^{-1}\mathbf{r}</math>
 
since <math>A</math> is diagonalizable; taking the p-norm of both sides, we obtain:
 
:<math>\|\mathbf{\tilde{v}}\|_p=\|V(D-\tilde{\lambda} I)^{-1}V^{-1}\mathbf{r}\|_p \leq \|V\|_p \|(D-\tilde{\lambda} I)^{-1}\|_p \|V^{-1}\|_p \|\mathbf{r}\|_p</math>
<math>=\kappa_p(V)\|(D-\tilde{\lambda} I)^{-1}\|_p \|\mathbf{r}\|_p.
</math>
 
But, since <math>(D-\tilde{\lambda} I)^{-1}</math> is a diagonal matrix, the p-norm is easily computed, and yields:
 
:<math>\|(D-\tilde{\lambda} I)^{-1}\|_p=\max_{\|\mathbf{x}\|_p \ne 0}\frac{\|(D-\tilde{\lambda} I)^{-1}\mathbf{x}\|_p}{\|\mathbf{x}\|_p}</math>
:<math>=\max_{\lambda\in\sigma(A)} \frac{1}{|\lambda-\tilde{\lambda}|}=\frac{1}{\min_{\lambda\in\sigma(A)}|\lambda-\tilde{\lambda}|}</math>
 
whence:
 
:<math>\min_{\lambda\in\sigma(A)}|\lambda-\tilde{\lambda}|\leq\kappa_p(V)\frac{\|\mathbf{r}\|_p}{\|\mathbf{\tilde{v}}\|_p}.</math>
 
The Bauer–Fike theorem, in both versions, yields an absolute bound. The following corollary, which, besides all the hypothesis of Bauer–Fike theorem, requires also the non-singularity of A, turns out to be useful whenever a relative bound is needed.
 
== Corollary ==
Be <math>A\in\mathbb{C}^{n,n}</math> a non-singular, [[diagonalizable|diagonalizable matrix]], and be <math>V\in\mathbb{C}^{n,n}</math> the non singular [[eigenvector]] matrix such as <math>A=V\Lambda V^{-1}</math>. Be moreover <math>\mu</math> an eigenvalue of the matrix <math>A+\delta A</math>; then an eigenvalue <math>\lambda\in\sigma(A)</math> exists such that:
 
:<math>\frac{|\lambda-\mu|}{|\lambda|}\leq\kappa_p (V)\|A^{-1}\delta A\|_p</math>
 
(Note: <math>\|A^{-1}\delta A\|</math>can be formally viewed as the "relative variation of A", just as <math>|\lambda-\mu||\lambda|^{-1}</math> is the relative variation of &lambda;.)
 
=== Proof ===
Since &mu; is an eigenvalue of (A+&delta;A) and <math>det(A)\ne 0</math>, we have, left-multiplying by <math>-A^{-1}</math>:
 
:<math>-A^{-1}(A+\delta A)\mathbf{v}=-\mu A^{-1}\mathbf{v}</math>
 
that is, putting<math>\tilde{A}=\mu A^{-1}</math> and <math>\tilde{\delta A}=-A^{-1}\delta A</math>:
 
:<math>(\tilde{A}+\tilde{\delta A}-I)\mathbf{v}=\mathbf{0}</math>
 
which means that<math>\tilde{\mu}=1</math>is an eigenvalue of<math>(\tilde{A}+\tilde{\delta A})</math>, with <math>\mathbf{v}</math>eigenvector. Now, the eigenvalues of <math>\tilde{A}</math>are <math>\frac{\mu}{\lambda_i}</math>, while its eigenvector matrix is the same as A. Applying the Bauer–Fike theorem to the matrix<math>\tilde{A}+\tilde{\delta A}</math> and to its eigenvalue<math>\tilde{\mu}=1</math>, we obtain:
 
:<math>\min_{\lambda\in\sigma(A)}\left|\frac{\mu}{\lambda}-1\right|=\min_{\lambda\in\sigma(A)}\frac{|\lambda-\mu|}{|\lambda|}\leq\kappa_p (V)\|A^{-1}\delta A\|_p</math>
 
== Remark ==
 
If A is [[normal matrix|normal]], V is a [[unitary matrix]], and <math>\|V\|_2=\|V^{-1}\|_2=1</math>, so that <math>\kappa_2(V)=1</math>.
 
The Bauer–Fike theorem then becomes:
 
:<math>\exists\lambda\in\sigma(A): |\lambda-\mu|\leq\|\delta A\|_2</math>
 
:( <math>\exists\lambda\in\sigma(A): |\lambda-\tilde{\lambda}|\leq\frac{\|\mathbf{r}\|_2}{\|\mathbf{\tilde{v}}\|_2}</math> in the alternative formulation)
 
which obviously remains true if A is a [[Hermitian matrix]]. In this case, however, a much stronger result holds, known as the [[Weyl's inequality|Weyl's theorem on eigenvalues]].
 
== References ==
# F. L. Bauer and C. T. Fike. ''Norms and exclusion theorems''. Numer. Math. 2 (1960), 137–141.
# S. C. Eisenstat and I. C. F. Ipsen. ''Three absolute perturbation bounds for matrix eigenvalues imply relative bounds''. SIAM Journal on Matrix Analysis and Applications Vol. 20, N. 1 (1998), 149–158
 
{{DEFAULTSORT:Bauer-Fike theorem}}
[[Category:Spectral theory]]
[[Category:Theorems in analysis]]
[[Category:Articles containing proofs]]

Revision as of 18:09, 20 January 2014

28 year-old Painting Investments Worker Truman from Regina, usually spends time with pastimes for instance interior design, property developers in new launch ec Singapore and writing. Last month just traveled to City of the Renaissance. In mathematics, the Bauer–Fike theorem is a standard result in the perturbation theory of the eigenvalue of a complex-valued diagonalizable matrix. In its substance, it states an absolute upper bound for the deviation of one perturbed matrix eigenvalue from a properly chosen eigenvalue of the exact matrix. Informally speaking, what it says is that the sensitivity of the eigenvalues is estimated by the condition number of the matrix of eigenvectors.

Theorem (Friedrich L. Bauer, C.T.Fike – 1960)

Let An,n be a diagonalizable matrix, and Vn,n be the non-singular eigenvector matrix such that A=VΛV1. Moreover, let μ be an eigenvalue of the matrix A+δA; then an eigenvalue λσ(A) exists such that:

|λμ|κp(V)δAp

where κp(V)=VpV1p is the usual condition number in p-norm.

Proof

If μσ(A), we can choose λ=μ and the thesis is trivially verified (since κp(V)1).

So, be μσ(A). Then det(ΛμI)0. μ being an eigenvalue of A+δA, we have det(A+δAμI)=0 and so

0=det(V1)det(A+δAμI)det(V)=det(Λ+V1δAVμI)
=det(ΛμI)det[(ΛμI)1V1δAV+I]

and, since det(ΛμI)0 as stated above, we must have

det[(ΛμI)1V1δAV+I]=0

which reveals the value −1 to be an eigenvalue of the matrix (ΛμI)1V1δAV.

For each consistent matrix norm, we have |λ|A, so, all p-norms being consistent, we can write:

1(ΛμI)1V1δAVp(ΛμI)1pV1pVpδAp
=(ΛμI)1pκp(V)δAp

But (ΛμI)1 being a diagonal matrix, the p-norm is easily computed, and yields:

(ΛμI)1p=maxxp0(ΛμI)1xpxp
=maxλσ(A)1|λμ|=1minλσ(A)|λμ|

whence:

minλσ(A)|λμ|κp(V)δAp.

The theorem can also be reformulated to better suit numerical methods. In fact, dealing with real eigensystem problems, one often has an exact matrix A, but knows only an approximate eigenvalue-eigenvector couple, (λ~,v~), and needs to bound the error. The following version comes in help.

Theorem (Friedrich L. Bauer, C.T.Fike – 1960) (alternative statement)

Let An,n be a diagonalizable matrix, and be Vn,n the non singular eigenvector matrix such as A=VΛV1. Be moreover (λ~,v~) an approximate eigenvalue-eigenvector couple, and r=Av~λ~v~; then an eigenvalue λσ(A) exists such that:

|λλ~|κp(V)rpv~p

where κp(V)=VpV1p is the usual condition number in p-norm.

Proof

We solve this problem with Tarık's method: mλ~σ(A) (otherwise, we can choose λ=λ~ and theorem is proven, since κp(V)1). Then (Aλ~I)1 exists, so we can write:

v~=(Aλ~I)1r=V(Dλ~I)1V1r

since A is diagonalizable; taking the p-norm of both sides, we obtain:

v~p=V(Dλ~I)1V1rpVp(Dλ~I)1pV1prp

=κp(V)(Dλ~I)1prp.

But, since (Dλ~I)1 is a diagonal matrix, the p-norm is easily computed, and yields:

(Dλ~I)1p=maxxp0(Dλ~I)1xpxp
=maxλσ(A)1|λλ~|=1minλσ(A)|λλ~|

whence:

minλσ(A)|λλ~|κp(V)rpv~p.

The Bauer–Fike theorem, in both versions, yields an absolute bound. The following corollary, which, besides all the hypothesis of Bauer–Fike theorem, requires also the non-singularity of A, turns out to be useful whenever a relative bound is needed.

Corollary

Be An,n a non-singular, diagonalizable matrix, and be Vn,n the non singular eigenvector matrix such as A=VΛV1. Be moreover μ an eigenvalue of the matrix A+δA; then an eigenvalue λσ(A) exists such that:

|λμ||λ|κp(V)A1δAp

(Note: A1δAcan be formally viewed as the "relative variation of A", just as |λμ||λ|1 is the relative variation of λ.)

Proof

Since μ is an eigenvalue of (A+δA) and det(A)0, we have, left-multiplying by A1:

A1(A+δA)v=μA1v

that is, puttingA~=μA1 and δA~=A1δA:

(A~+δA~I)v=0

which means thatμ~=1is an eigenvalue of(A~+δA~), with veigenvector. Now, the eigenvalues of A~are μλi, while its eigenvector matrix is the same as A. Applying the Bauer–Fike theorem to the matrixA~+δA~ and to its eigenvalueμ~=1, we obtain:

minλσ(A)|μλ1|=minλσ(A)|λμ||λ|κp(V)A1δAp

Remark

If A is normal, V is a unitary matrix, and V2=V12=1, so that κ2(V)=1.

The Bauer–Fike theorem then becomes:

λσ(A):|λμ|δA2
( λσ(A):|λλ~|r2v~2 in the alternative formulation)

which obviously remains true if A is a Hermitian matrix. In this case, however, a much stronger result holds, known as the Weyl's theorem on eigenvalues.

References

  1. F. L. Bauer and C. T. Fike. Norms and exclusion theorems. Numer. Math. 2 (1960), 137–141.
  2. S. C. Eisenstat and I. C. F. Ipsen. Three absolute perturbation bounds for matrix eigenvalues imply relative bounds. SIAM Journal on Matrix Analysis and Applications Vol. 20, N. 1 (1998), 149–158