Micromagnetics: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Rjwilmsi
m Applications: Format plain DOIs using AWB (8087)
 
No edit summary
Line 1: Line 1:
Wilber Berryhill is what his spouse enjoys to contact him and he totally enjoys this title. Ohio is exactly where her home is. He is an order clerk and it's something he truly appreciate. To play lacross is some thing I really appreciate performing.<br><br>Feel free to surf to my web blog ... best psychic ([http://chorokdeul.co.kr/index.php?document_srl=324263&mid=customer21 just click the next document])
{{Uniform polyhedra db|Uniform polyhedron stat table|Girsid}}
In [[geometry]], the '''great retrosnub icosidodecahedron''' is a [[nonconvex uniform polyhedron]], indexed as U<sub>74</sub>. It is given a [[Schläfli symbol]] s{3/2,5/3}.
 
== Cartesian coordinates ==
[[Cartesian coordinates]] for the vertices of a great retrosnub icosidodecahedron are all the [[even permutation]]s of
: (&plusmn;2&alpha;, &plusmn;2, &plusmn;2&beta;),
: (&plusmn;(&alpha;−&beta;&tau;−1/&tau;), &plusmn;(&alpha;/&tau;+&beta;−&tau;), &plusmn;(−&alpha;&tau;−&beta;/&tau;−1)),
: (&plusmn;(&alpha;&tau;−&beta;/&tau;+1), &plusmn;(−&alpha;−&beta;&tau;+1/&tau;), &plusmn;(−&alpha;/&tau;+&beta;+&tau;)),
: (&plusmn;(&alpha;&tau;−&beta;/&tau;−1), &plusmn;(&alpha;+&beta;&tau;+1/&tau;), &plusmn;(−&alpha;/&tau;+&beta;−&tau;)) and
: (&plusmn;(&alpha;−&beta;&tau;+1/&tau;), &plusmn;(−&alpha;/&tau;−&beta;−&tau;), &plusmn;(−&alpha;&tau;−&beta;/&tau;+1)),
with an even number of plus signs, where
: &alpha; = &xi;−1/&xi;
and
: &beta; = −&xi;/&tau;+1/&tau;<sup>2</sup>−1/(&xi;&tau;),
where &tau; = (1+&radic;5)/2 is the [[golden ratio|golden mean]] and
&xi; is the smaller positive real [[root of a function|root]] of &xi;<sup>3</sup>−2&xi;=−1/&tau;, namely
 
: <math>\xi=\frac{\left(1+i \sqrt3\right)\left(\frac1{2 \tau}+\sqrt{\frac{\tau^{-2}}4-\frac8{27}}\right)^\frac13+
\left(1-i \sqrt3\right)\left(\frac1{2 \tau}-\sqrt{\frac{\tau^{-2}}4-\frac8{27}}\right)^\frac13}2</math>
 
or approximately 0.3264046.
Taking the [[odd permutation]]s of the above coordinates with an odd number of plus signs gives another form, the [[Chirality (mathematics)|enantiomorph]] of the other one.
 
== See also ==
* [[List of uniform polyhedra]]
* [[Great snub icosidodecahedron]]
* [[Great inverted snub icosidodecahedron]]
 
== External links ==
* {{mathworld | urlname = GreatRetrosnubIcosidodecahedron| title = Great retrosnub icosidodecahedron}}
* http://gratrix.net/polyhedra/uniform/summary
{{Polyhedron-stub}}
[[Category:Uniform polyhedra]]

Revision as of 23:48, 29 January 2014

Template:Uniform polyhedra db In geometry, the great retrosnub icosidodecahedron is a nonconvex uniform polyhedron, indexed as U74. It is given a Schläfli symbol s{3/2,5/3}.

Cartesian coordinates

Cartesian coordinates for the vertices of a great retrosnub icosidodecahedron are all the even permutations of

(±2α, ±2, ±2β),
(±(α−βτ−1/τ), ±(α/τ+β−τ), ±(−ατ−β/τ−1)),
(±(ατ−β/τ+1), ±(−α−βτ+1/τ), ±(−α/τ+β+τ)),
(±(ατ−β/τ−1), ±(α+βτ+1/τ), ±(−α/τ+β−τ)) and
(±(α−βτ+1/τ), ±(−α/τ−β−τ), ±(−ατ−β/τ+1)),

with an even number of plus signs, where

α = ξ−1/ξ

and

β = −ξ/τ+1/τ2−1/(ξτ),

where τ = (1+√5)/2 is the golden mean and ξ is the smaller positive real root of ξ3−2ξ=−1/τ, namely

ξ=(1+i3)(12τ+τ24827)13+(1i3)(12ττ24827)132

or approximately 0.3264046. Taking the odd permutations of the above coordinates with an odd number of plus signs gives another form, the enantiomorph of the other one.

See also

External links

Template:Polyhedron-stub