Lateral earth pressure: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
Rankine theory: Equations corrected: in the Rankine formula for horizontal active pressure the first term is the square of cos beta, not cos beta.
 
article is about silos not soils, see http://www.gbv.de/dms/tib-ub-hannover/300868936.pdf
Line 1: Line 1:
Wilber Berryhill is the title his parents gave him and he totally digs that title. Office supervising is exactly where her primary income arrives from. What me and my family love is doing ballet but I've been taking on new things lately. I've always cherished living in Mississippi.<br><br>Feel free to surf to my website online psychic ([http://netwk.hannam.ac.kr/xe/data_2/85669 over here])
In [[complex network]] theory, the '''fitness model''' is a model of the evolution of a network: how the links between nodes change over time depends on the '''fitness''' of nodes. Fitter nodes attract more links at the expense of less fit nodes.
 
It has been used to model the network structure of the [[World Wide Web]].
 
==Description of the model==
The model is based on the idea of '''fitness,''' an inherent competitive factor that nodes may have, capable of affecting the network's evolution.<ref>Albert R. and Barabási A.-L., "Statistical mechanics of complex networks", ''Reviews of Modern Physics'' 74, 47 (2002)</ref> According to this idea, the nodes' intrinsic ability to attract links in the network varies from node to node, the most efficient (or "fit") being able to gather more edges in the expense of others. In that sense, not all nodes are identical to each other, and they claim their degree increase according to the fitness they possess every time. The fitness factors of all the nodes composing the network may form a distribution ρ(η) characteristic of the system been studied.
 
Bianconi and Barabási<ref>Bianconi Ginestra and Barabási A.-L., 2001a, ''Europhys. Lett.'' 54, 436.</ref> proposed a new model called Bianconi-Barabasi model, a variant to the Barabási-Albert model ([[BA model]]), where the probability for a node to connect to another one is supplied with a term expressing the fitness of the node involved. The fitness parameter is time independent and is multiplicative to the probability
 
: <math>\Pi_i = \frac{\eta_i  k_i}{\sum_j \eta_{j}k_j}.</math>
 
Thus, the system of equations for the time evolution of the degrees <math>k_{i}</math> according to the continuum theory introduced by the same model will have the form
 
: <math>\frac{\partial k_{i}}{\partial t} = m\Pi_{i} = m\frac{\eta_{i}k_{i}}{\sum_{j}\eta_{j}k_{j}}</math>
 
where ''m'' the number of edges the newly coming node has. If we require the solution to have a similar form to the one it had without the insertion of the fitness factors (to avoid ruining the [[power-law]] [[degree distribution]] of [[scale-free networks]]), then the exponent of the solution has to change and become fitness dependent
 
: <math>k_{\eta}(t,t_{i}) = m\left(\frac{t}{t_i}\right)^{\beta(\eta_{i})}</math>
 
where
 
: <math>\beta(\eta) = \frac{\eta}{C}\mbox{ and }C = \int\rho(\eta)\frac{\eta}{1-\beta(\eta)}\,d\eta.</math>
 
Hence, the more fit nodes increase their degree faster than the less ones. This characteristic attributes the network with a different behavior regarding its evolution. Without the introduction of the fitness property, all nodes had the same exponent in the power-law degree evolution formula. This means that the older nodes in the system would have more edges compared to newcoming ones. After the fitness property is introduced, this exponent, and accordingly, the slope of <math>k(t)</math> change, giving thus the opportunity to newcoming nodes to dominate the system.
 
It was seen through this example how can a network's evolution change behavior through the introduction of a new parameter in the model. However, we require the network to preserve its overall scale-free character. By forcing the fitness dependence to be accumulated in the exponent only, the degree-distribution will still be a power-law relationship, composed though by a weighted sum of different power-law in degree-evolution formulas
 
: <math>P(k) \sim \int\rho(\eta)\frac{C}{\eta}(m/k)^{C/\eta +1}\,d\eta</math>
 
where ρ(η) is the fitness distribution depending on the system's composition
 
The fitness model can be extended to in corporate additional processes, such as internal edges, which affect the exponents.<ref>Ergun, G. and G. J. Rodgers, ''Physica A'' 303 (2002) 261&ndash;272</ref>
 
==Fitness model and the evolution of the Web==
 
The fitness model has been used to model the network structure of the [[World Wide Web]]. In a [[PNAS]] article,<ref>J.S. Kong, N. Sarshar, V.P. Roychowdhury, "Experience versus Talent Shapes the Structure of the Web", Proceedings of the National Academy of Sciences of the USA, September 16, 2008; 105 (37)</ref> Kong et al. extended the fitness model to include random node deletion, a common phenomena in the Web. When the deletion rate of the web pages are accounted for, they found that the overall fitness distribution is exponential. Nonetheless, even this small variance in the fitness is amplified through the [[preferential attachment]] mechanism, leading to a [[heavy-tailed distribution]] of incoming links on the Web.
 
== See also ==
* [[Bose&ndash;Einstein condensation: a network theory approach]]
 
== References ==
 
<references/>
 
[[Category:Network theory]]

Revision as of 09:48, 17 January 2014

In complex network theory, the fitness model is a model of the evolution of a network: how the links between nodes change over time depends on the fitness of nodes. Fitter nodes attract more links at the expense of less fit nodes.

It has been used to model the network structure of the World Wide Web.

Description of the model

The model is based on the idea of fitness, an inherent competitive factor that nodes may have, capable of affecting the network's evolution.[1] According to this idea, the nodes' intrinsic ability to attract links in the network varies from node to node, the most efficient (or "fit") being able to gather more edges in the expense of others. In that sense, not all nodes are identical to each other, and they claim their degree increase according to the fitness they possess every time. The fitness factors of all the nodes composing the network may form a distribution ρ(η) characteristic of the system been studied.

Bianconi and Barabási[2] proposed a new model called Bianconi-Barabasi model, a variant to the Barabási-Albert model (BA model), where the probability for a node to connect to another one is supplied with a term expressing the fitness of the node involved. The fitness parameter is time independent and is multiplicative to the probability

Πi=ηikijηjkj.

Thus, the system of equations for the time evolution of the degrees ki according to the continuum theory introduced by the same model will have the form

kit=mΠi=mηikijηjkj

where m the number of edges the newly coming node has. If we require the solution to have a similar form to the one it had without the insertion of the fitness factors (to avoid ruining the power-law degree distribution of scale-free networks), then the exponent of the solution has to change and become fitness dependent

kη(t,ti)=m(tti)β(ηi)

where

β(η)=ηC and C=ρ(η)η1β(η)dη.

Hence, the more fit nodes increase their degree faster than the less ones. This characteristic attributes the network with a different behavior regarding its evolution. Without the introduction of the fitness property, all nodes had the same exponent in the power-law degree evolution formula. This means that the older nodes in the system would have more edges compared to newcoming ones. After the fitness property is introduced, this exponent, and accordingly, the slope of k(t) change, giving thus the opportunity to newcoming nodes to dominate the system.

It was seen through this example how can a network's evolution change behavior through the introduction of a new parameter in the model. However, we require the network to preserve its overall scale-free character. By forcing the fitness dependence to be accumulated in the exponent only, the degree-distribution will still be a power-law relationship, composed though by a weighted sum of different power-law in degree-evolution formulas

P(k)ρ(η)Cη(m/k)C/η+1dη

where ρ(η) is the fitness distribution depending on the system's composition

The fitness model can be extended to in corporate additional processes, such as internal edges, which affect the exponents.[3]

Fitness model and the evolution of the Web

The fitness model has been used to model the network structure of the World Wide Web. In a PNAS article,[4] Kong et al. extended the fitness model to include random node deletion, a common phenomena in the Web. When the deletion rate of the web pages are accounted for, they found that the overall fitness distribution is exponential. Nonetheless, even this small variance in the fitness is amplified through the preferential attachment mechanism, leading to a heavy-tailed distribution of incoming links on the Web.

See also

References

  1. Albert R. and Barabási A.-L., "Statistical mechanics of complex networks", Reviews of Modern Physics 74, 47 (2002)
  2. Bianconi Ginestra and Barabási A.-L., 2001a, Europhys. Lett. 54, 436.
  3. Ergun, G. and G. J. Rodgers, Physica A 303 (2002) 261–272
  4. J.S. Kong, N. Sarshar, V.P. Roychowdhury, "Experience versus Talent Shapes the Structure of the Web", Proceedings of the National Academy of Sciences of the USA, September 16, 2008; 105 (37)