Bending stiffness: Difference between revisions
Jump to navigation
Jump to search
en>ZéroBot m r2.7.1) (Robot: Adding pt:Rigidez à flexão |
en>Addbot m Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q4887116 |
||
Line 1: | Line 1: | ||
'''''Bhaskara's'' Lemma''' is an identity used as a lemma during the [[chakravala method]]. It states that: | |||
:<math>\, Nx^2 + k = y^2\implies \,N\left(\frac{mx + y}{k}\right)^2 + \frac{m^2 - N}{k} = \left(\frac{my + Nx}{k}\right)^2</math> | |||
for integers <math>m,\, x,\, y,\, N,</math> and non-zero integer <math>k</math>. | |||
==Proof== | |||
The proof follows from simple algebraic manipulations as follows: multiply both sides of the equation by <math>m^2-N</math>, add <math>N^2x^2+2Nmxy+Ny^2</math>, factor, and divide by <math>k^2</math>. | |||
:<math>\, Nx^2 + k = y^2\implies Nm^2x^2-N^2x^2+k(m^2-N) = m^2y^2-Ny^2</math> | |||
:<math>\implies Nm^2x^2+2Nmxy+Ny^2+k(m^2-N) = m^2y^2+2Nmxy+N^2x^2</math> | |||
:<math>\implies N(mx+y)^2+k(m^2-N) = (my+Nx)^2</math> | |||
:<math>\implies \,N\left(\frac{mx + y}{k}\right)^2 + \frac{m^2 - N}{k} = \left(\frac{my + Nx}{k}\right)^2.</math> | |||
So long as neither <math>k</math> nor <math>m^2-N</math> are zero, the implication goes in both directions. (Note also that the lemma holds for real or complex numbers as well as integers.) | |||
==References== | |||
*C. O. Selenius, "Rationale of the chakravala process of Jayadeva and Bhaskara II", ''Historia Mathematica'', 2 (1975), 167-184. | |||
*C. O. Selenius, ''Kettenbruch theoretische Erklarung der zyklischen Methode zur Losung der Bhaskara-Pell-Gleichung'', Acta Acad. Abo. Math. Phys. 23 (10) (1963). | |||
*George Gheverghese Joseph, ''The Crest of the Peacock: Non-European Roots of Mathematics'' (1975). | |||
==External links== | |||
*[http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/Pearce/Lectures/Ch8_6.html Introduction to chakravala] | |||
{{number-theoretic algorithms}} | |||
{{DEFAULTSORT:Bhaskara's lemma, proof of}} | |||
[[Category:Diophantine equations]] | |||
[[Category:Number theoretic algorithms]] | |||
[[Category:Lemmas]] | |||
[[Category:Indian mathematics]] | |||
[[Category:Articles containing proofs]] |
Revision as of 16:39, 17 March 2013
Bhaskara's Lemma is an identity used as a lemma during the chakravala method. It states that:
for integers and non-zero integer .
Proof
The proof follows from simple algebraic manipulations as follows: multiply both sides of the equation by , add , factor, and divide by .
So long as neither nor are zero, the implication goes in both directions. (Note also that the lemma holds for real or complex numbers as well as integers.)
References
- C. O. Selenius, "Rationale of the chakravala process of Jayadeva and Bhaskara II", Historia Mathematica, 2 (1975), 167-184.
- C. O. Selenius, Kettenbruch theoretische Erklarung der zyklischen Methode zur Losung der Bhaskara-Pell-Gleichung, Acta Acad. Abo. Math. Phys. 23 (10) (1963).
- George Gheverghese Joseph, The Crest of the Peacock: Non-European Roots of Mathematics (1975).