Banach–Tarski paradox: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Trovatore
inappropriate link -- if you want to talk about existence theorems, do it in the text
 
en>Pastafarianist
m Obtaining infinitely many balls from one: removed redundant full stop
Line 1: Line 1:
http://tinyurl.com/oc2xhq9, [http://tinyurl.com/oc2xhq9 http://tinyurl.com/oc2xhq9]. APRS l'eksplosjon, hviler ils sont dans une caverne et ont attendu pour sortir puis ils se sont Balads jusqu 'New Haven. Gil mettait des oppdrag exprs hell Jim qui s'amusait tirer sur la tl. Et puis au bout de deux ans il n'y et pluss eu de tl. Elle s'appelle Linda Nielsen. Nous sommes no 1981 New York. Elle va la bibliothque la recherche d'une estampe et des livres d'[http://mondediplo.com/spip.php?page=recherche&recherche=italien italien]. L'acteur d'Hollywood en confirm qu'il travaillait no studio avec le rappeur. Une Faon d'annoncer sønn grand retour dans les diagrammer. [.] S'il s'est depuis consacr sa carrire d'acteur, celui qui est devenu clbre grce sønn personnage du Prince de Bel Air pourrait bien faire son grand retour en musique.<br><br>Depuis plusieurs heures, les Flocons tombent gracieusement du Ciel, Tandis que les røyk y montent lentement. Tout se tranforme sous la baguette de Dame Mother nature sans que rien n'altre l'enchantement que ce opptog cre no moi. Le Frima starte dessiner des Cristaux sur la vitre de ma chambre. Devant la charcuterie alors que j'attendais man tour, un gass, la trentaine bien Passe disons 35 ans, et commenc en entam la samtale. Je lui Dit sans grande overbevisning que je vais rentrer en premire anne de Sociologie. Il se trouve que ce dernier est professeur de Sociologie, ici mme, Salamanque.<br><br>Le prix Nobel de Chimie lui est dcern no 2008 pour ses travaux sur la protine Fluorescente verte, protine dcouverte initialement dans l'organisme de la mduse Aequorea victoria no 1962 Roger Tsien en bidrag la comprhension du mcanisme de la fluorescens de la GFP et en cr des protines stasjoner capables d'Mønsteret d'autres longueurs d'onde (dans le jaune, le bleu, et le cyan) sous eksitasjon. CES protines sont devenues des outils essentiels et courants no Biologie molculaire et cellulaire ...<br><br>Comme nombre maksimal d'toiles, J'ai mis forty bil je me suis aperu que au del en ralentit normment. Je suis surpris bil je pensais pouvoir afficher sans problmes pluss de piksler que en. Je antar donc que en Vient de mon software, mais je n'ai aucune ide de ce qui pourrait amliorer la vitesse. Males, hvorfor oh hvorfor er du surre fuglen? Det er helt en midje tid. Det er alltid bedre å bare saltlake fuglen i four timer først. For enkelt å gjøre. Et SE-modellen med 1. Lykter, bremselys og blinklys bør alle kontrolleres med jevne mellomrom, og du bør også legge baklykter og sidelanterner til den pay attention. Un Bilan d menti par l'arm e soudanaise, qui en indiqu qu'un nombre tr s viktige de rebelles taient Morts au cours de ces affrontements.
'''Antiplane shear''' or '''antiplane strain'''<ref>W. S. Slaughter, 2002, ''The Linearized Theory of Elasticity'', Birkhauser</ref> is a special state of [[Deformation (mechanics)|strain]] in a body. This state of strain is achieved when the [[displacement field (mechanics)|displacement]]s in the body are zero in the plane of interest but nonzero in the direction perpendicular to the plane.  For small strains, the [[strain tensor]] under antiplane shear can be written as
 
: <math>\boldsymbol{\varepsilon} = \begin{bmatrix}
0 & 0 & \epsilon_{13} \\
0 & 0 & \epsilon_{23}\\
\epsilon_{13}    &    \epsilon_{23}      & 0\end{bmatrix}</math>
where the <math>12\,</math> plane is the plane of interest and the <math>3\,</math> direction is perpendicular to that plane.
 
== Displacements ==
The displacement field that leads to a state of antiplane shear is (in rectangular Cartesian coordinates)
:<math>
  u_1 = u_2 = 0 ~;~~ u_3 = \hat{u}_3(x_1, x_2)
</math>
where <math>u_i,~ i=1,2,3</math> are the displacements in the <math>x_1, x_2, x_3\,</math> directions.
 
== Stresses ==
For an [[isotropic]], [[Deformation (engineering)#Elastic_deformation|linear elastic]] material, the [[stress (physics)|stress]] tensor that results from a state of antiplane shear can be expressed as
:<math>
  \boldsymbol{\sigma} \equiv
    \begin{bmatrix}
      \sigma_{11} & \sigma_{12} & \sigma_{13} \\
      \sigma_{12} & \sigma_{22} & \sigma_{23} \\
      \sigma_{13} & \sigma_{23} & \sigma_{33}
    \end{bmatrix} =
    \begin{bmatrix} 0 & 0 & \mu~\cfrac{\partial u_3}{\partial x_1} \\
        0 & 0 & \mu~\cfrac{\partial u_3}{\partial x_2} \\
        \mu~\cfrac{\partial u_3}{\partial x_1} & \mu~\cfrac{\partial u_3}{\partial x_2} & 0 \end{bmatrix}
</math>
where <math>\mu\,</math> is the shear modulus of the material.
 
== Equilibrium equation for antiplane shear ==
The conservation of linear momentum in the absence of inertial forces takes the form of the '''equilibrium equation'''. For general states of stress there are three equilibrium equations. However, for antiplane shear, with the assumption that body forces in the 1 and 2 directions are 0, these reduce to one equilibrium equation which is expressed as
:<math>
    \mu~\nabla^2 u_3 + b_3(x_1, x_2) = 0
</math>
where <math>b_3</math> is the body force in the <math>x_3</math> direction and <math>\nabla^2 u_3 = \cfrac{\partial^2 u_3}{\partial x_1^2} + \cfrac{\partial^2 u_3}{\partial x_2^2}</math>. Note that this equation is valid only for infinitesimal strains.
 
== Applications ==
The antiplane shear assumption is used to determine the stresses and displacements due to a [[screw dislocation]].
 
== References ==
<references />
 
== See also ==
*[[Infinitesimal strain theory]]
*[[Deformation (mechanics)]]
 
[[Category:Elasticity (physics)]]
[[Category:Solid mechanics]]

Revision as of 19:29, 2 February 2014

Antiplane shear or antiplane strain[1] is a special state of strain in a body. This state of strain is achieved when the displacements in the body are zero in the plane of interest but nonzero in the direction perpendicular to the plane. For small strains, the strain tensor under antiplane shear can be written as

ε=[00ϵ1300ϵ23ϵ13ϵ230]

where the 12 plane is the plane of interest and the 3 direction is perpendicular to that plane.

Displacements

The displacement field that leads to a state of antiplane shear is (in rectangular Cartesian coordinates)

u1=u2=0;u3=u^3(x1,x2)

where ui,i=1,2,3 are the displacements in the x1,x2,x3 directions.

Stresses

For an isotropic, linear elastic material, the stress tensor that results from a state of antiplane shear can be expressed as

σ[σ11σ12σ13σ12σ22σ23σ13σ23σ33]=[00μu3x100μu3x2μu3x1μu3x20]

where μ is the shear modulus of the material.

Equilibrium equation for antiplane shear

The conservation of linear momentum in the absence of inertial forces takes the form of the equilibrium equation. For general states of stress there are three equilibrium equations. However, for antiplane shear, with the assumption that body forces in the 1 and 2 directions are 0, these reduce to one equilibrium equation which is expressed as

μ2u3+b3(x1,x2)=0

where b3 is the body force in the x3 direction and 2u3=2u3x12+2u3x22. Note that this equation is valid only for infinitesimal strains.

Applications

The antiplane shear assumption is used to determine the stresses and displacements due to a screw dislocation.

References

  1. W. S. Slaughter, 2002, The Linearized Theory of Elasticity, Birkhauser

See also